Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/38379
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Horita, Vanderlei | - |
dc.contributor.author | Muniz, Nivaldo | - |
dc.contributor.author | Sabini, Paulo Rogerio | - |
dc.date.accessioned | 2014-05-20T15:28:36Z | - |
dc.date.accessioned | 2016-10-25T18:03:42Z | - |
dc.date.available | 2014-05-20T15:28:36Z | - |
dc.date.available | 2016-10-25T18:03:42Z | - |
dc.date.issued | 2007-04-01 | - |
dc.identifier | http://dx.doi.org/10.1017/S0143385706000496 | - |
dc.identifier.citation | Ergodic Theory and Dynamical Systems. New York: Cambridge Univ Press, v. 27, p. 459-492, 2007. | - |
dc.identifier.issn | 0143-3857 | - |
dc.identifier.uri | http://hdl.handle.net/11449/38379 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/38379 | - |
dc.description.abstract | We prove that a 'positive probability' subset of the boundary of '{uniformly expanding circle transformations}' consists of Kupka-Smale maps. More precisely, we construct an open class of two-parameter families of circle maps (f(alpha,theta))(alpha,theta) such that, for a positive Lebesgue measure subset of values of alpha, the family (f(alpha,theta))(theta) crosses the boundary of the uniformly expanding domain at a map for which all periodic points are hyperbolic (expanding) and no critical point is pre-periodic. Furthermore, these maps admit an absolutely continuous invariant measure. We also provide information about the geometry of the boundary of the set of hyperbolic maps. | en |
dc.format.extent | 459-492 | - |
dc.language.iso | eng | - |
dc.publisher | Cambridge University Press | - |
dc.source | Web of Science | - |
dc.title | Non-periodic bifurcations of one-dimensional maps | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Universidade Federal do Maranhão (UFMA) | - |
dc.contributor.institution | Universidade do Estado do Rio de Janeiro (UERJ) | - |
dc.description.affiliation | Univ Estadual Paulista, IBILCE, Dept Matemat, BR-15054000 São Paulo, Brazil | - |
dc.description.affiliation | Univ Fed Maranhao, Dept Matemat, BR-65000000 Sao Luis, MA, Brazil | - |
dc.description.affiliation | Univ Estado Rio de Janeiro, Inst Matemat & Estat, BR-20550900 Rio de Janeiro, Brazil | - |
dc.description.affiliationUnesp | Univ Estadual Paulista, IBILCE, Dept Matemat, BR-15054000 São Paulo, Brazil | - |
dc.identifier.doi | 10.1017/S0143385706000496 | - |
dc.identifier.wos | WOS:000245597800007 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.identifier.file | WOS000245597800007.pdf | - |
dc.relation.ispartof | Ergodic Theory and Dynamical Systems | - |
dc.identifier.orcid | 0000-0002-9304-0655 | pt |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.