You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/38540
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYang, S. Y.-
dc.contributor.authorHo, S. L.-
dc.contributor.authorNi, G. Z.-
dc.contributor.authorMachado, Jose Marcio-
dc.contributor.authorWong, K. F.-
dc.date.accessioned2014-05-20T15:28:47Z-
dc.date.accessioned2016-10-25T18:03:59Z-
dc.date.available2014-05-20T15:28:47Z-
dc.date.available2016-10-25T18:03:59Z-
dc.date.issued2007-04-01-
dc.identifierhttp://dx.doi.org/10.1109/TMAG.2006.892112-
dc.identifier.citationIEEE Transactions on Magnetics. Piscataway: IEEE-Inst Electrical Electronics Engineers Inc., v. 43, n. 4, p. 1601-1604, 2007.-
dc.identifier.issn0018-9464-
dc.identifier.urihttp://hdl.handle.net/11449/38540-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/38540-
dc.description.abstractTo enhance the global search ability of population based incremental learning (PBIL) methods, it is proposed that multiple probability vectors are to be included on available PBIL algorithms. The strategy for updating those probability vectors and the negative learning and mutation operators are thus re-defined correspondingly. Moreover, to strike the best tradeoff between exploration and exploitation searches, an adaptive updating strategy for the learning rate is designed. Numerical examples are reported to demonstrate the pros and cons of the newly implemented algorithm.en
dc.format.extent1601-1604-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)-
dc.sourceWeb of Science-
dc.subjectgenetic algorithm (GA)pt
dc.subjectglobal optimizationpt
dc.subjectinverse problempt
dc.subjectpopulation based incremental learning (PBIL) methodpt
dc.titleA new implementation of population based incremental learning method for optimizations in electromagneticsen
dc.typeoutro-
dc.contributor.institutionZhejiang Univ-
dc.contributor.institutionHong Kong Polytech Univ-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationZhejiang Univ, Coll Elect Engn, Hangzhou 310027, Peoples R China-
dc.description.affiliationHong Kong Polytech Univ, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China-
dc.description.affiliationUNESP, Sao Jose do Rio Preto, Brazil-
dc.description.affiliationUnespUNESP, Sao Jose do Rio Preto, Brazil-
dc.identifier.doi10.1109/TMAG.2006.892112-
dc.identifier.wosWOS:000245327200114-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofIEEE Transactions on Magnetics-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.