You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/38573
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGuimaraes, Oswaldo L. C.-
dc.contributor.authorQueiroz de Aquino, Henrique Otavio-
dc.contributor.authorOliveira, Ivy S.-
dc.contributor.authorVillela, Darcy Nunes-
dc.contributor.authorIzario, Helcio Jose-
dc.contributor.authorSiqueira, Adriano Francisco-
dc.contributor.authorSilva, Messias Borges-
dc.date.accessioned2014-05-20T15:28:50Z-
dc.date.accessioned2016-10-25T18:04:02Z-
dc.date.available2014-05-20T15:28:50Z-
dc.date.available2016-10-25T18:04:02Z-
dc.date.issued2007-08-01-
dc.identifierhttp://dx.doi.org/10.1002/ceat.200700113-
dc.identifier.citationChemical Engineering & Technology. Weinheim: Wiley-v C H Verlag Gmbh, v. 30, n. 8, p. 1134-1139, 2007.-
dc.identifier.issn0930-7516-
dc.identifier.urihttp://hdl.handle.net/11449/38573-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/38573-
dc.description.abstractThis communication proposes the use of neural networks in the prediction of residual concentrations of hydrogen peroxide from the treatment of effluents through Advanced Oxidative Processes (AOP's), in particular, the photo-Fenton process. To verify the efficiency of the oxidative process, the Chemical Oxygen Demand (COD) parameter, the values of which may be modified by the presence of oxidizing agents such as residual hydrogen peroxide, is frequently taken in account. The analysis of the H2O2 interference was performed by spectrophotometry at 450 nm wavelength, via the monitoring of the reaction of ammonia with metavanadate. The results of the hydrogen peroxide residual concentration were modeled via a feedforward neural network, with the correlation coefficients between actual and predicted values above 0.96, indicating good prediction capacity.en
dc.format.extent1134-1139-
dc.language.isoeng-
dc.publisherWiley-Blackwell-
dc.sourceWeb of Science-
dc.subjecthydrogen peroxidept
dc.subjectneural networkspt
dc.subjectphoto-Fentonpt
dc.titlePrediction via neural networks of the residual hydrogen peroxide used in photo-fenton processes for effluent treatmenten
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv São Paulo, Escola Engenharia Lorena, BR-12602810 São Paulo, Brazil-
dc.description.affiliationSão Paulo State Univ UNESP, Sch Engn Guarantingueta, São Paulo, Brazil-
dc.description.affiliationUnespSão Paulo State Univ UNESP, Sch Engn Guarantingueta, São Paulo, Brazil-
dc.identifier.doi10.1002/ceat.200700113-
dc.identifier.wosWOS:000248710900022-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofChemical Engineering & Technology-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.