Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/38744
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Soares, J. | - |
dc.contributor.author | Oliveira, A. P. | - |
dc.contributor.author | Boznar, M. Z. | - |
dc.contributor.author | Mlakar, P. | - |
dc.contributor.author | Escobedo, João Francisco | - |
dc.contributor.author | Machado, A. J. | - |
dc.date.accessioned | 2014-05-20T15:29:04Z | - |
dc.date.accessioned | 2016-10-25T18:04:17Z | - |
dc.date.available | 2014-05-20T15:29:04Z | - |
dc.date.available | 2016-10-25T18:04:17Z | - |
dc.date.issued | 2004-10-01 | - |
dc.identifier | http://dx.doi.org/10.1016/j.apenergy.2003.11.004 | - |
dc.identifier.citation | Applied Energy. Oxford: Elsevier B.V., v. 79, n. 2, p. 201-214, 2004. | - |
dc.identifier.issn | 0306-2619 | - |
dc.identifier.uri | http://hdl.handle.net/11449/38744 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/38744 | - |
dc.description.abstract | dIn this work, a perceptron neural-network technique is applied to estimate hourly values of the diffuse solar-radiation at the surface in São Paulo City, Brazil, using as input the global solar-radiation and other meteorological parameters measured from 1998 to 2001. The neural-network verification was performed using the hourly measurements of diffuse solar-radiation obtained during the year 2002. The neural network was developed based on both feature determination and pattern selection techniques. It was found that the inclusion of the atmospheric long-wave radiation as input improves the neural-network performance. on the other hand traditional meteorological parameters, like air temperature and atmospheric pressure, are not as important as long-wave radiation which acts as a surrogate for cloud-cover information on the regional scale. An objective evaluation has shown that the diffuse solar-radiation is better reproduced by neural network synthetic series than by a correlation model. (C) 2004 Elsevier Ltd. All rights reserved. | en |
dc.format.extent | 201-214 | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier B.V. | - |
dc.source | Web of Science | - |
dc.subject | hourly diffuse solar radiation | pt |
dc.subject | perceptron neural network | pt |
dc.subject | São Paulo City | pt |
dc.title | Modeling hourly diffuse solar-radiation in the city of São Paulo using a neural-network technique | en |
dc.type | outro | - |
dc.contributor.institution | Universidade de São Paulo (USP) | - |
dc.contributor.institution | Jozef Stefan Inst | - |
dc.contributor.institution | AMES Doo | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Univ São Paulo, Dept Atmospher Sci, Grp Micrometeorol, BR-05508900 São Paulo, Brazil | - |
dc.description.affiliation | Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia | - |
dc.description.affiliation | AMES Doo, SI-1000 Ljubljana, Slovenia | - |
dc.description.affiliation | Univ Estadual Paulista Julio Mesquita Filho, Dept Environm Sci, Lab Solar Radiat, Botucatu, SP, Brazil | - |
dc.description.affiliationUnesp | Univ Estadual Paulista Julio Mesquita Filho, Dept Environm Sci, Lab Solar Radiat, Botucatu, SP, Brazil | - |
dc.identifier.doi | 10.1016/j.apenergy.2003.11.004 | - |
dc.identifier.wos | WOS:000223920000006 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Applied Energy | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.