You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/38744
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSoares, J.-
dc.contributor.authorOliveira, A. P.-
dc.contributor.authorBoznar, M. Z.-
dc.contributor.authorMlakar, P.-
dc.contributor.authorEscobedo, João Francisco-
dc.contributor.authorMachado, A. J.-
dc.date.accessioned2014-05-20T15:29:04Z-
dc.date.accessioned2016-10-25T18:04:17Z-
dc.date.available2014-05-20T15:29:04Z-
dc.date.available2016-10-25T18:04:17Z-
dc.date.issued2004-10-01-
dc.identifierhttp://dx.doi.org/10.1016/j.apenergy.2003.11.004-
dc.identifier.citationApplied Energy. Oxford: Elsevier B.V., v. 79, n. 2, p. 201-214, 2004.-
dc.identifier.issn0306-2619-
dc.identifier.urihttp://hdl.handle.net/11449/38744-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/38744-
dc.description.abstractdIn this work, a perceptron neural-network technique is applied to estimate hourly values of the diffuse solar-radiation at the surface in São Paulo City, Brazil, using as input the global solar-radiation and other meteorological parameters measured from 1998 to 2001. The neural-network verification was performed using the hourly measurements of diffuse solar-radiation obtained during the year 2002. The neural network was developed based on both feature determination and pattern selection techniques. It was found that the inclusion of the atmospheric long-wave radiation as input improves the neural-network performance. on the other hand traditional meteorological parameters, like air temperature and atmospheric pressure, are not as important as long-wave radiation which acts as a surrogate for cloud-cover information on the regional scale. An objective evaluation has shown that the diffuse solar-radiation is better reproduced by neural network synthetic series than by a correlation model. (C) 2004 Elsevier Ltd. All rights reserved.en
dc.format.extent201-214-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjecthourly diffuse solar radiationpt
dc.subjectperceptron neural networkpt
dc.subjectSão Paulo Citypt
dc.titleModeling hourly diffuse solar-radiation in the city of São Paulo using a neural-network techniqueen
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionJozef Stefan Inst-
dc.contributor.institutionAMES Doo-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv São Paulo, Dept Atmospher Sci, Grp Micrometeorol, BR-05508900 São Paulo, Brazil-
dc.description.affiliationJozef Stefan Inst, SI-1000 Ljubljana, Slovenia-
dc.description.affiliationAMES Doo, SI-1000 Ljubljana, Slovenia-
dc.description.affiliationUniv Estadual Paulista Julio Mesquita Filho, Dept Environm Sci, Lab Solar Radiat, Botucatu, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista Julio Mesquita Filho, Dept Environm Sci, Lab Solar Radiat, Botucatu, SP, Brazil-
dc.identifier.doi10.1016/j.apenergy.2003.11.004-
dc.identifier.wosWOS:000223920000006-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofApplied Energy-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.