Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/38765
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Antunes, P. A. | - |
dc.contributor.author | Oliveira, O. N. | - |
dc.contributor.author | Aroca, R. F. | - |
dc.contributor.author | Chierice, G. O. | - |
dc.contributor.author | Constantino, CJL | - |
dc.date.accessioned | 2014-05-20T15:29:06Z | - |
dc.date.accessioned | 2016-10-25T18:04:18Z | - |
dc.date.available | 2014-05-20T15:29:06Z | - |
dc.date.available | 2016-10-25T18:04:18Z | - |
dc.date.issued | 2005-06-30 | - |
dc.identifier | http://dx.doi.org/10.1016/j.apsusc.2004.11.035 | - |
dc.identifier.citation | Applied Surface Science. Amsterdam: Elsevier B.V., v. 246, n. 4, p. 323-326, 2005. | - |
dc.identifier.issn | 0169-4332 | - |
dc.identifier.uri | http://hdl.handle.net/11449/38765 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/38765 | - |
dc.description.abstract | In this work, we investigate Langmuir monolayers froth an amide extracted from dried roots of Ottonia propinqua, a native Brazilian plant believed to exhibit anesthetic and hallucinogen activities. In addition to producing monolayers from the amide itself, we probe the molecular-level action of the amide on phospholipids employed as simple membrane models. The surface pressure-molecular area (pi-A) isotherms for the amide were little affected by a number of subphase conditions. Almost no changes were observed upon varying the compression speed, spreading volume onto the surface, ions in the subphase, ionic strength and the solution solvent. However, stronger effects occurred when the subphase temperature and pH were altered, as the isotherms were shifted to larger areas with increasing temperatures and decreasing pHs. These results are discussed in terms of the molecular packing adopted by the amide at the air-water interface. In the mixed films with arachidic acid, the area per molecule varied linearly with the concentration of amide, probably due to phase separation. on the other hand, in the mixed films with dipalmitoyl phosphatidyl choline (DPPC), small amounts of the amide were sufficient to change the pi-A isotherms significantly. This points to a strong molecular-level interaction, probably between the phosphate group in the zwitterion of DPPC and the nitrogen from the amidic group. (c) 2004 Elsevier B.V. All rights reserved. | en |
dc.format.extent | 323-326 | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier B.V. | - |
dc.source | Web of Science | - |
dc.subject | isotherms | pt |
dc.subject | anesthetic | pt |
dc.subject | membrane | pt |
dc.title | Langmuir films of an amide extracted from Piperaceae and its interaction with phospholipids | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Universidade de São Paulo (USP) | - |
dc.contributor.institution | Univ Windsor | - |
dc.description.affiliation | UNESP, FCT, DFQB, BR-19060900 Presidente Prudente, SP, Brazil | - |
dc.description.affiliation | USP, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil | - |
dc.description.affiliation | USP, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil | - |
dc.description.affiliation | Univ Windsor, Dept Chem, Windsor, ON N9B 3P4, Canada | - |
dc.description.affiliationUnesp | UNESP, FCT, DFQB, BR-19060900 Presidente Prudente, SP, Brazil | - |
dc.identifier.doi | 10.1016/j.apsusc.2004.11.035 | - |
dc.identifier.wos | WOS:000229884900004 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Applied Surface Science | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.