Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/38806
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Almeida, LAF | - |
dc.contributor.author | Dalmazi, D. | - |
dc.date.accessioned | 2014-05-20T15:29:10Z | - |
dc.date.accessioned | 2016-10-25T18:04:23Z | - |
dc.date.available | 2014-05-20T15:29:10Z | - |
dc.date.available | 2016-10-25T18:04:23Z | - |
dc.date.issued | 2005-08-05 | - |
dc.identifier | http://dx.doi.org/10.1088/0305-4470/38/31/001 | - |
dc.identifier.citation | Journal of Physics A-mathematical and General. Bristol: Iop Publishing Ltd, v. 38, n. 31, p. 6863-6877, 2005. | - |
dc.identifier.issn | 0305-4470 | - |
dc.identifier.uri | http://hdl.handle.net/11449/38806 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/38806 | - |
dc.description.abstract | We carry out a numerical and analytic analysis of the Yang-Lee zeros of the ID Blume-Capel model with periodic boundary conditions and its generalization on Feynman diagrams for which we include sums over all connected and nonconnected rings for a given number of spins. In both cases, for a specific range of the parameters, the zeros originally on the unit circle are shown to depart from it as we increase the temperature beyond some limit. The curve of zeros can bifurcate- and become two disjoint arcs as in the 2D case. We also show that in the thermodynamic limit the zeros of both Blume-Capel models on the static (connected ring) and on the dynamical (Feynman diagrams) lattice tend to overlap. In the special case of the 1D Ising model on Feynman diagrams we can prove for arbitrary number of spins that the Yang-Lee zeros must be on the unit circle. The proof is based on a property of the zeros of Legendre polynomials. | en |
dc.format.extent | 6863-6877 | - |
dc.language.iso | eng | - |
dc.publisher | Iop Publishing Ltd | - |
dc.source | Web of Science | - |
dc.title | The Yang-Lee zeros of the 1D Blume-Capel model on connected and non-connected rings | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | UNESP, BR-12516410 Guaratingueta, SP, Brazil | - |
dc.description.affiliationUnesp | UNESP, BR-12516410 Guaratingueta, SP, Brazil | - |
dc.identifier.doi | 10.1088/0305-4470/38/31/001 | - |
dc.identifier.wos | WOS:000231455900001 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Journal of Physics A: Mathematical and General | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.