You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/39694
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBiasi, C.-
dc.contributor.authordos Santos, E. L.-
dc.date.accessioned2014-05-20T15:30:16Z-
dc.date.accessioned2016-10-25T18:05:43Z-
dc.date.available2014-05-20T15:30:16Z-
dc.date.available2016-10-25T18:05:43Z-
dc.date.issued2006-06-01-
dc.identifierhttp://dx.doi.org/10.1007/s00233-006-0601-x-
dc.identifier.citationSemigroup Forum. New York: Springer, v. 72, n. 3, p. 353-361, 2006.-
dc.identifier.issn0037-1912-
dc.identifier.urihttp://hdl.handle.net/11449/39694-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/39694-
dc.description.abstractOur objective in this paper is to prove an Implicit Function Theorem for general topological spaces. As a consequence, we show that, under certain conditions, the set of the invertible elements of a topological monoid X is an open topological group in X and we use the classical topological group theory to conclude that this set is a Lie group.en
dc.format.extent353-361-
dc.language.isoeng-
dc.publisherSpringer-
dc.sourceWeb of Science-
dc.subjectImplicit Function Theorempt
dc.subjecttopological monoidspt
dc.subjecttopological groupspt
dc.subjectLie groupspt
dc.subjectgeneralized manifoldspt
dc.titleA homological version of the implicit function theoremen
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv São Paulo, ICMC, Dept Matemat, BR-13560970 Sao Carlos, SP, Brazil-
dc.description.affiliationUniv Estadual Paulista, IBILCE, UNESP, Dept Matemat, BR-15054000 Sao Jose do Rio Preto, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, IBILCE, UNESP, Dept Matemat, BR-15054000 Sao Jose do Rio Preto, Brazil-
dc.identifier.doi10.1007/s00233-006-0601-x-
dc.identifier.wosWOS:000238024000002-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofSemigroup Forum-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.