Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/39694
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Biasi, C. | - |
dc.contributor.author | dos Santos, E. L. | - |
dc.date.accessioned | 2014-05-20T15:30:16Z | - |
dc.date.accessioned | 2016-10-25T18:05:43Z | - |
dc.date.available | 2014-05-20T15:30:16Z | - |
dc.date.available | 2016-10-25T18:05:43Z | - |
dc.date.issued | 2006-06-01 | - |
dc.identifier | http://dx.doi.org/10.1007/s00233-006-0601-x | - |
dc.identifier.citation | Semigroup Forum. New York: Springer, v. 72, n. 3, p. 353-361, 2006. | - |
dc.identifier.issn | 0037-1912 | - |
dc.identifier.uri | http://hdl.handle.net/11449/39694 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/39694 | - |
dc.description.abstract | Our objective in this paper is to prove an Implicit Function Theorem for general topological spaces. As a consequence, we show that, under certain conditions, the set of the invertible elements of a topological monoid X is an open topological group in X and we use the classical topological group theory to conclude that this set is a Lie group. | en |
dc.format.extent | 353-361 | - |
dc.language.iso | eng | - |
dc.publisher | Springer | - |
dc.source | Web of Science | - |
dc.subject | Implicit Function Theorem | pt |
dc.subject | topological monoids | pt |
dc.subject | topological groups | pt |
dc.subject | Lie groups | pt |
dc.subject | generalized manifolds | pt |
dc.title | A homological version of the implicit function theorem | en |
dc.type | outro | - |
dc.contributor.institution | Universidade de São Paulo (USP) | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Univ São Paulo, ICMC, Dept Matemat, BR-13560970 Sao Carlos, SP, Brazil | - |
dc.description.affiliation | Univ Estadual Paulista, IBILCE, UNESP, Dept Matemat, BR-15054000 Sao Jose do Rio Preto, Brazil | - |
dc.description.affiliationUnesp | Univ Estadual Paulista, IBILCE, UNESP, Dept Matemat, BR-15054000 Sao Jose do Rio Preto, Brazil | - |
dc.identifier.doi | 10.1007/s00233-006-0601-x | - |
dc.identifier.wos | WOS:000238024000002 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Semigroup Forum | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.