Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/39915
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Abanto-Valle, C. A. | - |
dc.contributor.author | Bandyopadhyay, D. | - |
dc.contributor.author | Lachos, V. H. | - |
dc.contributor.author | Enriquez, I. | - |
dc.date.accessioned | 2014-05-20T15:30:34Z | - |
dc.date.accessioned | 2016-10-25T18:06:07Z | - |
dc.date.available | 2014-05-20T15:30:34Z | - |
dc.date.available | 2016-10-25T18:06:07Z | - |
dc.date.issued | 2010-12-01 | - |
dc.identifier | http://dx.doi.org/10.1016/j.csda.2009.06.011 | - |
dc.identifier.citation | Computational Statistics & Data Analysis. Amsterdam: Elsevier B.V., v. 54, n. 12, p. 2883-2898, 2010. | - |
dc.identifier.issn | 0167-9473 | - |
dc.identifier.uri | http://hdl.handle.net/11449/39915 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/39915 | - |
dc.description.abstract | A Bayesian analysis of stochastic volatility (SV) models using the class of symmetric scale mixtures of normal (SMN) distributions is considered. In the face of non-normality, this provides an appealing robust alternative to the routine use of the normal distribution. Specific distributions examined include the normal, student-t, slash and the variance gamma distributions. Using a Bayesian paradigm, an efficient Markov chain Monte Carlo (MCMC) algorithm is introduced for parameter estimation. Moreover, the mixing parameters obtained as a by-product of the scale mixture representation can be used to identify outliers. The methods developed are applied to analyze daily stock returns data on S&P500 index. Bayesian model selection criteria as well as out-of-sample forecasting results reveal that the SV models based on heavy-tailed SMN distributions provide significant improvement in model fit as well as prediction to the S&P500 index data over the usual normal model. (C) 2009 Elsevier B.V. All rights reserved. | en |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) | - |
dc.description.sponsorship | United States National Institutes of Health | - |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
dc.format.extent | 2883-2898 | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier B.V. | - |
dc.source | Web of Science | - |
dc.title | Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Federal do Rio de Janeiro (UFRJ) | - |
dc.contributor.institution | Med Univ S Carolina | - |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Univ Fed Rio de Janeiro, Dept Stat, BR-21945970 Rio de Janeiro, RJ, Brazil | - |
dc.description.affiliation | Med Univ S Carolina, Dept Biostat Bioinformat & Epidemiol, Charleston, SC 29425 USA | - |
dc.description.affiliation | Univ Estadual Campinas, Dept Stat, Campinas, SP, Brazil | - |
dc.description.affiliation | São Paulo State Univ, Dept Stat, São Paulo, Brazil | - |
dc.description.affiliationUnesp | São Paulo State Univ, Dept Stat, São Paulo, Brazil | - |
dc.description.sponsorshipId | FAPERJ: E-26/171.092/2006 | - |
dc.description.sponsorshipId | NIH: P20 RR017696-06 | - |
dc.identifier.doi | 10.1016/j.csda.2009.06.011 | - |
dc.identifier.wos | WOS:000281333900002 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Computational Statistics & Data Analysis | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.