You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/39915
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAbanto-Valle, C. A.-
dc.contributor.authorBandyopadhyay, D.-
dc.contributor.authorLachos, V. H.-
dc.contributor.authorEnriquez, I.-
dc.date.accessioned2014-05-20T15:30:34Z-
dc.date.accessioned2016-10-25T18:06:07Z-
dc.date.available2014-05-20T15:30:34Z-
dc.date.available2016-10-25T18:06:07Z-
dc.date.issued2010-12-01-
dc.identifierhttp://dx.doi.org/10.1016/j.csda.2009.06.011-
dc.identifier.citationComputational Statistics & Data Analysis. Amsterdam: Elsevier B.V., v. 54, n. 12, p. 2883-2898, 2010.-
dc.identifier.issn0167-9473-
dc.identifier.urihttp://hdl.handle.net/11449/39915-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/39915-
dc.description.abstractA Bayesian analysis of stochastic volatility (SV) models using the class of symmetric scale mixtures of normal (SMN) distributions is considered. In the face of non-normality, this provides an appealing robust alternative to the routine use of the normal distribution. Specific distributions examined include the normal, student-t, slash and the variance gamma distributions. Using a Bayesian paradigm, an efficient Markov chain Monte Carlo (MCMC) algorithm is introduced for parameter estimation. Moreover, the mixing parameters obtained as a by-product of the scale mixture representation can be used to identify outliers. The methods developed are applied to analyze daily stock returns data on S&P500 index. Bayesian model selection criteria as well as out-of-sample forecasting results reveal that the SV models based on heavy-tailed SMN distributions provide significant improvement in model fit as well as prediction to the S&P500 index data over the usual normal model. (C) 2009 Elsevier B.V. All rights reserved.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)-
dc.description.sponsorshipUnited States National Institutes of Health-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.format.extent2883-2898-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.titleRobust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributionsen
dc.typeoutro-
dc.contributor.institutionUniversidade Federal do Rio de Janeiro (UFRJ)-
dc.contributor.institutionMed Univ S Carolina-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Fed Rio de Janeiro, Dept Stat, BR-21945970 Rio de Janeiro, RJ, Brazil-
dc.description.affiliationMed Univ S Carolina, Dept Biostat Bioinformat & Epidemiol, Charleston, SC 29425 USA-
dc.description.affiliationUniv Estadual Campinas, Dept Stat, Campinas, SP, Brazil-
dc.description.affiliationSão Paulo State Univ, Dept Stat, São Paulo, Brazil-
dc.description.affiliationUnespSão Paulo State Univ, Dept Stat, São Paulo, Brazil-
dc.description.sponsorshipIdFAPERJ: E-26/171.092/2006-
dc.description.sponsorshipIdNIH: P20 RR017696-06-
dc.identifier.doi10.1016/j.csda.2009.06.011-
dc.identifier.wosWOS:000281333900002-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofComputational Statistics & Data Analysis-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.