You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/40291
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPontes, Fabricio J.-
dc.contributor.authorFerreira, Joao R.-
dc.contributor.authorSilva, Messias B.-
dc.contributor.authorPaiva, Anderson P.-
dc.contributor.authorBalestrassi, Pedro Paulo-
dc.date.accessioned2014-05-20T15:31:03Z-
dc.date.accessioned2016-10-25T18:06:46Z-
dc.date.available2014-05-20T15:31:03Z-
dc.date.available2016-10-25T18:06:46Z-
dc.date.issued2010-08-01-
dc.identifierhttp://dx.doi.org/10.1007/s00170-009-2456-2-
dc.identifier.citationInternational Journal of Advanced Manufacturing Technology. London: Springer London Ltd, v. 49, n. 9-12, p. 879-902, 2010.-
dc.identifier.issn0268-3768-
dc.identifier.urihttp://hdl.handle.net/11449/40291-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/40291-
dc.description.abstractIn recent years, several papers on machining processes have focused on the use of artificial neural networks for modeling surface roughness. Even in such a specific niche of engineering literature, the papers differ considerably in terms of how they define network architectures and validate results, as well as in their training algorithms, error measures, and the like. Furthermore, a perusal of the individual papers leaves a researcher without a clear, sweeping view of what the field's cutting edge is. Hence, this work reviews a number of these papers, providing a summary and analysis of the findings. Based on recommendations made by scholars of neurocomputing and statistics, the review includes a set of comparison criteria as well as assesses how the research findings were validated. This work also identifies trends in the literature and highlights their main differences. Ultimately, this work points to underexplored issues for future research and shows ways to improve how the results are validated.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)-
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.format.extent879-902-
dc.language.isoeng-
dc.publisherSpringer London Ltd-
dc.sourceWeb of Science-
dc.subjectArtificial neural networksen
dc.subjectMachiningen
dc.subjectSurface roughnessen
dc.subjectModelingen
dc.titleArtificial neural networks for machining processes surface roughness modelingen
dc.typeoutro-
dc.contributor.institutionUniversidade Federal de Itajubá (UNIFEI)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniversidade Federal de Itajubá (UNIFEI), Ind Engn Inst, Itajuba, MG, Brazil-
dc.description.affiliationSão Paulo State Univ, São Paulo, Brazil-
dc.description.affiliationUnespSão Paulo State Univ, São Paulo, Brazil-
dc.identifier.doi10.1007/s00170-009-2456-2-
dc.identifier.wosWOS:000280846600005-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofInternational Journal of Advanced Manufacturing Technology-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.