Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/40445
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Buzzi, Claudio A. | - |
dc.contributor.author | da Silva, Paulo R. | - |
dc.contributor.author | Teixeira, Marco A. | - |
dc.date.accessioned | 2014-05-20T15:31:15Z | - |
dc.date.accessioned | 2016-10-25T18:07:01Z | - |
dc.date.available | 2014-05-20T15:31:15Z | - |
dc.date.available | 2016-10-25T18:07:01Z | - |
dc.date.issued | 2012-06-01 | - |
dc.identifier | http://dx.doi.org/10.1016/j.bulsci.2011.06.001 | - |
dc.identifier.citation | Bulletin Des Sciences Mathematiques. Paris: Gauthier-villars/editions Elsevier, v. 136, n. 4, p. 444-462, 2012. | - |
dc.identifier.issn | 0007-4497 | - |
dc.identifier.uri | http://hdl.handle.net/11449/40445 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/40445 | - |
dc.description.abstract | This article extends results contained in Buzzi et al. (2006) [4], Llibre et al. (2007, 2008) [12,13] concerning the dynamics of non-smooth systems. In those papers a piecewise C-k discontinuous vector field Z on R-n is considered when the discontinuities are concentrated on a codimension one submanifold. In this paper our aim is to study the dynamics of a discontinuous system when its discontinuity set belongs to a general class of algebraic sets. In order to do this we first consider F :U -> R a polynomial function defined on the open subset U subset of R-n. The set F-1 (0) divides U into subdomains U-1, U-2,...,U-k, with border F-1(0). These subdomains provide a Whitney stratification on U. We consider Z(i) :U-i -> R-n smooth vector fields and we get Z = (Z(1),...., Z(k)) a discontinuous vector field with discontinuities in F-1(0). Our approach combines several techniques such as epsilon-regularization process, blowing-up method and singular perturbation theory. Recall that an approximation of a discontinuous vector field Z by a one parameter family of continuous vector fields is called an epsilon-regularization of Z (see Sotomayor and Teixeira, 1996 [18]; Llibre and Teixeira, 1997 [15]). Systems as discussed in this paper turn out to be relevant for problems in control theory (Minorsky, 1969 [16]), in systems with hysteresis (Seidman, 2006 [17]) and in mechanical systems with impacts (di Bernardo et al., 2008 [5]). (C) 2011 Elsevier Masson SAS. All rights reserved. | en |
dc.format.extent | 444-462 | - |
dc.language.iso | eng | - |
dc.publisher | Gauthier-villars/editions Elsevier | - |
dc.source | Web of Science | - |
dc.subject | Regularization | en |
dc.subject | Vector fields | en |
dc.subject | Singular perturbation | en |
dc.subject | Non-smooth vector field | en |
dc.subject | Sliding vector field | en |
dc.title | Slow-fast systems on algebraic varieties bordering piecewise-smooth dynamical systems | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | - |
dc.description.affiliation | IBILCE UNESP, Dept Matemat, BR-15054000 São Paulo, Brazil | - |
dc.description.affiliation | IMECC UNICAMP, BR-13081970 São Paulo, Brazil | - |
dc.description.affiliationUnesp | IBILCE UNESP, Dept Matemat, BR-15054000 São Paulo, Brazil | - |
dc.identifier.doi | 10.1016/j.bulsci.2011.06.001 | - |
dc.identifier.wos | WOS:000305302400007 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Bulletin des Sciences Mathematiques | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.