You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/40445
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBuzzi, Claudio A.-
dc.contributor.authorda Silva, Paulo R.-
dc.contributor.authorTeixeira, Marco A.-
dc.date.accessioned2014-05-20T15:31:15Z-
dc.date.accessioned2016-10-25T18:07:01Z-
dc.date.available2014-05-20T15:31:15Z-
dc.date.available2016-10-25T18:07:01Z-
dc.date.issued2012-06-01-
dc.identifierhttp://dx.doi.org/10.1016/j.bulsci.2011.06.001-
dc.identifier.citationBulletin Des Sciences Mathematiques. Paris: Gauthier-villars/editions Elsevier, v. 136, n. 4, p. 444-462, 2012.-
dc.identifier.issn0007-4497-
dc.identifier.urihttp://hdl.handle.net/11449/40445-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/40445-
dc.description.abstractThis article extends results contained in Buzzi et al. (2006) [4], Llibre et al. (2007, 2008) [12,13] concerning the dynamics of non-smooth systems. In those papers a piecewise C-k discontinuous vector field Z on R-n is considered when the discontinuities are concentrated on a codimension one submanifold. In this paper our aim is to study the dynamics of a discontinuous system when its discontinuity set belongs to a general class of algebraic sets. In order to do this we first consider F :U -> R a polynomial function defined on the open subset U subset of R-n. The set F-1 (0) divides U into subdomains U-1, U-2,...,U-k, with border F-1(0). These subdomains provide a Whitney stratification on U. We consider Z(i) :U-i -> R-n smooth vector fields and we get Z = (Z(1),...., Z(k)) a discontinuous vector field with discontinuities in F-1(0). Our approach combines several techniques such as epsilon-regularization process, blowing-up method and singular perturbation theory. Recall that an approximation of a discontinuous vector field Z by a one parameter family of continuous vector fields is called an epsilon-regularization of Z (see Sotomayor and Teixeira, 1996 [18]; Llibre and Teixeira, 1997 [15]). Systems as discussed in this paper turn out to be relevant for problems in control theory (Minorsky, 1969 [16]), in systems with hysteresis (Seidman, 2006 [17]) and in mechanical systems with impacts (di Bernardo et al., 2008 [5]). (C) 2011 Elsevier Masson SAS. All rights reserved.en
dc.format.extent444-462-
dc.language.isoeng-
dc.publisherGauthier-villars/editions Elsevier-
dc.sourceWeb of Science-
dc.subjectRegularizationen
dc.subjectVector fieldsen
dc.subjectSingular perturbationen
dc.subjectNon-smooth vector fielden
dc.subjectSliding vector fielden
dc.titleSlow-fast systems on algebraic varieties bordering piecewise-smooth dynamical systemsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.description.affiliationIBILCE UNESP, Dept Matemat, BR-15054000 São Paulo, Brazil-
dc.description.affiliationIMECC UNICAMP, BR-13081970 São Paulo, Brazil-
dc.description.affiliationUnespIBILCE UNESP, Dept Matemat, BR-15054000 São Paulo, Brazil-
dc.identifier.doi10.1016/j.bulsci.2011.06.001-
dc.identifier.wosWOS:000305302400007-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofBulletin des Sciences Mathematiques-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.