You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/40841
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSouza, Aparecida D. P.-
dc.contributor.authorMigon, Helio S.-
dc.date.accessioned2014-05-20T15:31:48Z-
dc.date.accessioned2016-10-25T18:07:46Z-
dc.date.available2014-05-20T15:31:48Z-
dc.date.available2016-10-25T18:07:46Z-
dc.date.issued2010-01-01-
dc.identifierhttp://dx.doi.org/10.1080/02664760903031153-
dc.identifier.citationJournal of Applied Statistics. Abingdon: Routledge Journals, Taylor & Francis Ltd, v. 37, n. 8, p. 1355-1368, 2010.-
dc.identifier.issn0266-4763-
dc.identifier.urihttp://hdl.handle.net/11449/40841-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/40841-
dc.description.abstractWe propose alternative approaches to analyze residuals in binary regression models based on random effect components. Our preferred model does not depend upon any tuning parameter, being completely automatic. Although the focus is mainly on accommodation of outliers, the proposed methodology is also able to detect them. Our approach consists of evaluating the posterior distribution of random effects included in the linear predictor. The evaluation of the posterior distributions of interest involves cumbersome integration, which is easily dealt with through stochastic simulation methods. We also discuss different specifications of prior distributions for the random effects. The potential of these strategies is compared in a real data set. The main finding is that the inclusion of extra variability accommodates the outliers, improving the adjustment of the model substantially, besides correctly indicating the possible outliers.en
dc.format.extent1355-1368-
dc.language.isoeng-
dc.publisherRoutledge Journals, Taylor & Francis Ltd-
dc.sourceWeb of Science-
dc.subjectbinary regression modelsen
dc.subjectBayesian residualen
dc.subjectrandom effecten
dc.subjectmixture of normalsen
dc.subjectMarkov chain Monte Carloen
dc.titleBayesian outlier analysis in binary regressionen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Federal do Rio de Janeiro (UFRJ)-
dc.description.affiliationUniv Estadual Paulista, Fac Ciencias & Tecnol, Presidente Prudente, SP, Brazil-
dc.description.affiliationUniv Fed Rio de Janeiro, Inst Matemat, Rio de Janeiro, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, Fac Ciencias & Tecnol, Presidente Prudente, SP, Brazil-
dc.identifier.doi10.1080/02664760903031153-
dc.identifier.wosWOS:000280810900008-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofJournal of Applied Statistics-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.