Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/40841
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Souza, Aparecida D. P. | - |
dc.contributor.author | Migon, Helio S. | - |
dc.date.accessioned | 2014-05-20T15:31:48Z | - |
dc.date.accessioned | 2016-10-25T18:07:46Z | - |
dc.date.available | 2014-05-20T15:31:48Z | - |
dc.date.available | 2016-10-25T18:07:46Z | - |
dc.date.issued | 2010-01-01 | - |
dc.identifier | http://dx.doi.org/10.1080/02664760903031153 | - |
dc.identifier.citation | Journal of Applied Statistics. Abingdon: Routledge Journals, Taylor & Francis Ltd, v. 37, n. 8, p. 1355-1368, 2010. | - |
dc.identifier.issn | 0266-4763 | - |
dc.identifier.uri | http://hdl.handle.net/11449/40841 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/40841 | - |
dc.description.abstract | We propose alternative approaches to analyze residuals in binary regression models based on random effect components. Our preferred model does not depend upon any tuning parameter, being completely automatic. Although the focus is mainly on accommodation of outliers, the proposed methodology is also able to detect them. Our approach consists of evaluating the posterior distribution of random effects included in the linear predictor. The evaluation of the posterior distributions of interest involves cumbersome integration, which is easily dealt with through stochastic simulation methods. We also discuss different specifications of prior distributions for the random effects. The potential of these strategies is compared in a real data set. The main finding is that the inclusion of extra variability accommodates the outliers, improving the adjustment of the model substantially, besides correctly indicating the possible outliers. | en |
dc.format.extent | 1355-1368 | - |
dc.language.iso | eng | - |
dc.publisher | Routledge Journals, Taylor & Francis Ltd | - |
dc.source | Web of Science | - |
dc.subject | binary regression models | en |
dc.subject | Bayesian residual | en |
dc.subject | random effect | en |
dc.subject | mixture of normals | en |
dc.subject | Markov chain Monte Carlo | en |
dc.title | Bayesian outlier analysis in binary regression | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Universidade Federal do Rio de Janeiro (UFRJ) | - |
dc.description.affiliation | Univ Estadual Paulista, Fac Ciencias & Tecnol, Presidente Prudente, SP, Brazil | - |
dc.description.affiliation | Univ Fed Rio de Janeiro, Inst Matemat, Rio de Janeiro, Brazil | - |
dc.description.affiliationUnesp | Univ Estadual Paulista, Fac Ciencias & Tecnol, Presidente Prudente, SP, Brazil | - |
dc.identifier.doi | 10.1080/02664760903031153 | - |
dc.identifier.wos | WOS:000280810900008 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Journal of Applied Statistics | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.