Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/40985
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Pontes, Fabricio Jose | - |
dc.contributor.author | de Paiva, Anderson Paulo | - |
dc.contributor.author | Balestrassi, Pedro Paulo | - |
dc.contributor.author | Ferreira, Joao Roberto | - |
dc.contributor.author | da Silva, Messias Borges | - |
dc.date.accessioned | 2014-05-20T15:31:58Z | - |
dc.date.accessioned | 2016-10-25T18:08:01Z | - |
dc.date.available | 2014-05-20T15:31:58Z | - |
dc.date.available | 2016-10-25T18:08:01Z | - |
dc.date.issued | 2012-07-01 | - |
dc.identifier | http://dx.doi.org/10.1016/j.eswa.2012.01.058 | - |
dc.identifier.citation | Expert Systems With Applications. Oxford: Pergamon-Elsevier B.V. Ltd, v. 39, n. 9, p. 7776-7787, 2012. | - |
dc.identifier.issn | 0957-4174 | - |
dc.identifier.uri | http://hdl.handle.net/11449/40985 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/40985 | - |
dc.description.abstract | This work presents a study on the applicability of radial base function (RBF) neural networks for prediction of Roughness Average (R-a) in the turning process of SAE 52100 hardened steel, with the use of Taguchi's orthogonal arrays as a tool to design parameters of the network. Experiments were conducted with training sets of different sizes to make possible to compare the performance of the best network obtained from each experiment. The following design factors were considered: (i) number of radial units. (ii) algorithm for selection of radial centers and (iii) algorithm for selection of the spread factor of the radial function. Artificial neural networks (ANN) models obtained proved capable to predict surface roughness in accurate, precise and affordable way. Results pointed significant factors for network design have significant influence on network performance for the task proposed. The work concludes that the design of experiments (DOE) methodology constitutes a better approach to the design of RBF networks for roughness prediction than the most common trial and error approach. (C) 2012 Elsevier Ltd. All rights reserved. | en |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) | - |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | - |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | - |
dc.format.extent | 7776-7787 | - |
dc.language.iso | eng | - |
dc.publisher | Pergamon-Elsevier B.V. Ltd | - |
dc.source | Web of Science | - |
dc.subject | RBF neural networks | en |
dc.subject | Taguchi methods | en |
dc.subject | Hard turning | en |
dc.subject | Surface roughness | en |
dc.title | Optimization of Radial Basis Function neural network employed for prediction of surface roughness in hard turning process using Taguchi's orthogonal arrays | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Federal de Itajubá (UNIFEI) | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Universidade Federal de Itajubá (UNIFEI), Inst Ind Engn, BR-37500903 Itajuba, MG, Brazil | - |
dc.description.affiliation | São Paulo State Univ, Fac Engn Guaratingueta, BR-12516410 Guaratingueta, SP, Brazil | - |
dc.description.affiliationUnesp | São Paulo State Univ, Fac Engn Guaratingueta, BR-12516410 Guaratingueta, SP, Brazil | - |
dc.description.sponsorshipId | FAPEMIG: PE 024/2008 | - |
dc.identifier.doi | 10.1016/j.eswa.2012.01.058 | - |
dc.identifier.wos | WOS:000303281600020 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Expert Systems with Applications | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.