You are in the accessibility menu

Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArantes, Tatiane M.-
dc.contributor.authorMambrini, Giovanni P.-
dc.contributor.authorStroppa, Daniel G.-
dc.contributor.authorLeite, Edson R.-
dc.contributor.authorLongo, Elson-
dc.contributor.authorRamirez, Antonio J.-
dc.contributor.authorCamargo, Emerson R.-
dc.identifier.citationJournal of Nanoparticle Research. Dordrecht: Springer, v. 12, n. 8, p. 3105-3110, 2010.-
dc.description.abstractNanocrystalline zirconium oxide was synthesized by hydrothermal treatment of ZrO(NO3)(2) and ZrOCl2 aqueous solutions at different temperatures and time in presence of hydrogen peroxide. Hydrothermal treatment of zirconium salts (0.25 and 0.50 mol L-1) produced nanocrystalline monoclinic ZrO2 powders with narrow size distribution, which were formed by the attachment of the smaller particles with crystallites size of 3.5 nm, estimated by means of the Scherrer's equation and confirmed by transmission electronic microscopy. Typical monoclinic zirconium oxide X-ray powder diffraction patterns and Raman spectra were obtained for all the crystalline powders. It was observed that the crystallization depends strongly on the temperature, resulting in amorphous material when the synthesis was realized at 100 A degrees C, and crystalline with monoclinic phase when synthesized at 110 A degrees C, independently of the salt used. Zirconium oxide colloidal nanoparticles were formed only at hydrothermal treatments longer than 24 h. The stability of the colloids was successfully characterized of zeta potential, showing an initial value of + 59.2 mV in acid media and isoelectric point at pH = 5.2, in good agreement with previous studies.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.sourceWeb of Science-
dc.subjectMonoclinic zirconiaen
dc.titleStable colloidal suspensions of nanostructured zirconium oxide synthesized by hydrothermal processen
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniversidade Federal de São Carlos (UFSCar), Dept Chem, LIEC, BR-13565 São Carlos, SP, Brazil-
dc.description.affiliationLME, Brazilian Synchrotron Light Lab, Campinas, SP, Brazil-
dc.description.affiliationUNESP, Inst Chem, Araraquara, SP, Brazil-
dc.description.affiliationUnespUNESP, Inst Chem, Araraquara, SP, Brazil-
dc.description.sponsorshipIdFAPESP: 07/58.991-7-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofJournal of Nanoparticle Research-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.