You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/41154
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRodrigues, Rogerio S.-
dc.contributor.authorBalestrassi, Pedro Paulo-
dc.contributor.authorPaiva, Anderson P.-
dc.contributor.authorGarcia-Diaz, Alberto-
dc.contributor.authorPontes, Fabricio J.-
dc.date.accessioned2014-05-20T15:32:11Z-
dc.date.accessioned2016-10-25T18:08:20Z-
dc.date.available2014-05-20T15:32:11Z-
dc.date.available2016-10-25T18:08:20Z-
dc.date.issued2012-06-01-
dc.identifierhttp://dx.doi.org/10.1007/s10844-011-0176-1-
dc.identifier.citationJournal of Intelligent Information Systems. Dordrecht: Springer, v. 38, n. 3, p. 741-766, 2012.-
dc.identifier.issn0925-9902-
dc.identifier.urihttp://hdl.handle.net/11449/41154-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/41154-
dc.description.abstractBeing more competitive is routine in the aeronautical sector. Airline competitiveness is affected by such factors as time, price, reliability, availability, safety, technology, quality, and information management. To remain competitive, airlines must promptly identify and correct failures found in their fleet. This study aims at reducing the time spent on identifying and correcting such failures logged. Utilizing Text Mining techniques during the pre-processing phase, our study processes an extensive database of events from commercial regional jets. The result is a unique list of keywords that describes each reported failure. Later, an Artificial Neural Network (ANN) identifies and classifies failure patterns, yielding a respective disposition for a given failure pattern. Approximately five years of historical data was used to build and validate the present model. Results obtained were promising.en
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)-
dc.format.extent741-766-
dc.language.isoeng-
dc.publisherSpringer-
dc.sourceWeb of Science-
dc.subjectArtificial Neural Network (ANN)en
dc.subjectText miningen
dc.subjectFailure patternen
dc.subjectAircraft log booken
dc.subjectRepairen
dc.titleAircraft interior failure pattern recognition utilizing text mining and neural networksen
dc.typeoutro-
dc.contributor.institutionUniversidade Federal de Itajubá (UNIFEI)-
dc.contributor.institutionUniv Tennessee-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniversidade Federal de Itajubá (UNIFEI), Itajuba, Brazil-
dc.description.affiliationUniv Tennessee, Knoxville, TN 37919 USA-
dc.description.affiliationUniv Estadual Paulista UNESP, Guaratingueta, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista UNESP, Guaratingueta, SP, Brazil-
dc.identifier.doi10.1007/s10844-011-0176-1-
dc.identifier.wosWOS:000304100400008-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofJournal of Intelligent Information Systems-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.