You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/41172
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPeres, Sarajane M.-
dc.contributor.authorNetto, Marcio L. de A.-
dc.date.accessioned2014-05-20T15:32:12Z-
dc.date.accessioned2016-10-25T18:08:22Z-
dc.date.available2014-05-20T15:32:12Z-
dc.date.available2016-10-25T18:08:22Z-
dc.date.issued2008-01-01-
dc.identifierhttp://dx.doi.org/10.1109/IJCNN.2008.4633964-
dc.identifier.citation2008 IEEE International Joint Conference on Neural Networks, Vols 1-8. New York: IEEE, p. 1285-1291, 2008.-
dc.identifier.issn1098-7576-
dc.identifier.urihttp://hdl.handle.net/11449/41172-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/41172-
dc.description.abstractThis paper presents the principal results of a detailed study about the use of the Meaningful Fractal Fuzzy Dimension measure in the problem in determining adequately the topological dimension of output space of a Self-Organizing Map. This fractal measure is conceived by combining the Fractals Theory and Fuzzy Approximate Reasoning. In this work this measure was applied on the dataset in order to obtain a priori knowledge, which is used to support the decision making about the SOM output space design. Several maps were designed with this approach and their evaluations are discussed here.en
dc.format.extent1285-1291-
dc.language.isoeng-
dc.publisherIEEE-
dc.sourceWeb of Science-
dc.titleThe Meaningful Fractal Fuzzy Dimension Applied to the Design of Self Organizing Mapsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv São Paulo, State Univ São Paulo, BR-09500900 São Paulo, Brazil-
dc.description.affiliationUnespUniv São Paulo, State Univ São Paulo, BR-09500900 São Paulo, Brazil-
dc.identifier.doi10.1109/IJCNN.2008.4633964-
dc.identifier.wosWOS:000263827200207-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartof2008 IEEE International Joint Conference on Neural Networks, Vols 1-8-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.