You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/41718
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVernilli, F.-
dc.contributor.authorSilva, S. N.-
dc.contributor.authorSiqueira, A. F.-
dc.contributor.authorLeite, E. F.-
dc.contributor.authorSaito, E.-
dc.contributor.authorNascimento, V. F.-
dc.contributor.authorLongo, Elson-
dc.date.accessioned2014-05-20T15:32:57Z-
dc.date.accessioned2016-10-25T18:09:21Z-
dc.date.available2014-05-20T15:32:57Z-
dc.date.available2016-10-25T18:09:21Z-
dc.date.issued2008-09-01-
dc.identifierhttp://dx.doi.org/10.1016/j.fueleneab.2009.12.004-
dc.identifier.citationIndustrial Ceramics. Faenza: Techna Srl, v. 28, n. 2, p. 133-137, 2008.-
dc.identifier.issn1121-7588-
dc.identifier.urihttp://hdl.handle.net/11449/41718-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/41718-
dc.description.abstractOne of the major problems facing Blast Furnaces is the occurrence of cracks in taphole mud, as the underlying causes are not easily identifiable. The absence of this knowledge makes it difficult the use of conventional techniques for predictability and mitigation. This paper will address the application of Probabilistic Neural Network using the Matlab software as a means to detect and control such cracks. The most relevant BF operational variables were picked through the statistic tool "Principal Component Analysis - PCA." Based upon the selection of these variables a probabilistic neural network was built. A set of BF operational data, consisting of 30 controlling variables, was divided into 2 groups, one of which for network training, and the other one to validate the neural network. The neural network got 98% of the cases right. The results show the effectiveness of this tool for crack prediction in relation to clay intrinsic properties and as a result of the fluctuation in operational variables.en
dc.format.extent133-137-
dc.language.isoeng-
dc.publisherTechna Srl-
dc.sourceWeb of Science-
dc.titleProbabilistic neural network to predict cracks in taphole mud used in blast furnacesen
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionCSN-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationEEL USP, Engn Sch Lorena, São Paulo, Brazil-
dc.description.affiliationCSN, Companhia Siderurg Nacl, Cyrela, Brazil-
dc.description.affiliationUniv Estadual Paulista, CMDMC, Multidisciplinary Ctr Dev Ceram Mat, São Paulo, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, CMDMC, Multidisciplinary Ctr Dev Ceram Mat, São Paulo, Brazil-
dc.identifier.doi10.1016/j.fueleneab.2009.12.004-
dc.identifier.wosWOS:000259878200004-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofIndustrial Ceramics-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.