You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/41726
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLouzada-Neto, Francisco-
dc.contributor.authorCancho, Vicente G.-
dc.contributor.authorBarriga, Gladys Dorotea Cacsire-
dc.date.accessioned2014-05-20T15:32:57Z-
dc.date.accessioned2016-10-25T18:09:22Z-
dc.date.available2014-05-20T15:32:57Z-
dc.date.available2016-10-25T18:09:22Z-
dc.date.issued2011-01-01-
dc.identifierhttp://dx.doi.org/10.1080/02664763.2010.491862-
dc.identifier.citationJournal of Applied Statistics. Abingdon: Routledge Journals, Taylor & Francis Ltd, v. 38, n. 6, p. 1239-1248, 2011.-
dc.identifier.issn0266-4763-
dc.identifier.urihttp://hdl.handle.net/11449/41726-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/41726-
dc.description.abstractIn this paper, we proposed a new two-parameter lifetime distribution with increasing failure rate. The new distribution arises on a latent complementary risk scenario. The properties of the proposed distribution are discussed, including a formal proof of its density function and an explicit algebraic formulae for its quantiles and survival and hazard functions. Also, we have discussed inference aspects of the model proposed via Bayesian inference by using Markov chain Monte Carlo simulation. A simulation study investigates the frequentist properties of the proposed estimators obtained under the assumptions of non-informative priors. Further, some discussions on models selection criteria are given. The developed methodology is illustrated on a real data set.en
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.format.extent1239-1248-
dc.language.isoeng-
dc.publisherRoutledge Journals, Taylor & Francis Ltd-
dc.sourceWeb of Science-
dc.subjectBayesian inferenceen
dc.subjectcomplementary risksen
dc.subjectexponential distributionen
dc.subjectPoisson distributionen
dc.subjectsurvival analysisen
dc.titleThe Poisson-exponential distribution: a Bayesian approachen
dc.typeoutro-
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationDEs UFSCar, BR-13565905 São Carlos, SP, Brazil-
dc.description.affiliationICMC USP, BR-13560970 São Carlos, SP, Brazil-
dc.description.affiliationFEB UNESP, BR-17033360 Bauru, SP, Brazil-
dc.description.affiliationUnespFEB UNESP, BR-17033360 Bauru, SP, Brazil-
dc.identifier.doi10.1080/02664763.2010.491862-
dc.identifier.wosWOS:000288670000009-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofJournal of Applied Statistics-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.