You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/41799
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDe Magalhaes, M. S.-
dc.contributor.authorCosta, A. F. B.-
dc.contributor.authorMoura Neto, F. D.-
dc.date.accessioned2014-05-20T15:33:04Z-
dc.date.accessioned2016-10-25T18:09:30Z-
dc.date.available2014-05-20T15:33:04Z-
dc.date.available2016-10-25T18:09:30Z-
dc.date.issued2009-06-01-
dc.identifierhttp://dx.doi.org/10.1016/j.ijpe.2008.10.017-
dc.identifier.citationInternational Journal of Production Economics. Amsterdam: Elsevier B.V., v. 119, n. 2, p. 271-283, 2009.-
dc.identifier.issn0925-5273-
dc.identifier.urihttp://hdl.handle.net/11449/41799-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/41799-
dc.description.abstractThe purpose of this article is to present a statistical design of a hierarchy of two-states adaptive parameters (X) over bar charts. We assume that the shift in the process mean does not occur at the beginning of the production process but at some random time in the future. The occurrence time of the shift is assumed to be an exponentially distributed random variable. This assumption allows the application of the Markov chain approach for developing performance measures. Seven adaptive (X) over bar charts result from the combinations of the design parameters, that is, the sample size, the sampling interval, and the factor used to define the control limits, when one, two, or all of them are allowed to vary. arranged in a hierarchy. When comparing the performance between different two-state charts one sometimes can use a chart with fewer parameters varying and yet achieve good performance, however this depends on the size of process shift. One can change the probability of the control system to be in a state of loose control: considering that, its effect on the adjusted average time to signal and on the design parameters was analyzed numerically. (C) 2009 Elsevier B.V. All rights reserved.en
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)-
dc.format.extent271-283-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectQuality controlen
dc.subjectStatistical process controlen
dc.subjectAdaptive control chartsen
dc.titleA hierarchy of adaptive (X)over-bar control chartsen
dc.typeoutro-
dc.contributor.institutionIBGE-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade do Estado do Rio de Janeiro (UERJ)-
dc.description.affiliationIBGE, ENCE, Brazilian Inst Geog & Stat, Natl Sch Stat Sci, BR-20231050 Rio de Janeiro, Brazil-
dc.description.affiliationState Univ São Paulo FEG UNESP, Guaratingueta Fac Engn, BR-12516410 Guaratingueta, SP, Brazil-
dc.description.affiliationState Univ Rio de Janeiro IPRJ UERJ, Polytech Inst, BR-28601970 Nova Friburgo, RJ, Brazil-
dc.description.affiliationUnespState Univ São Paulo FEG UNESP, Guaratingueta Fac Engn, BR-12516410 Guaratingueta, SP, Brazil-
dc.identifier.doi10.1016/j.ijpe.2008.10.017-
dc.identifier.wosWOS:000267643400006-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofInternational Journal of Production Economics-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.