You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/41969
Full metadata record
DC FieldValueLanguage
dc.contributor.authordo Nascimento, Claudionor Francisco-
dc.contributor.authorde Oliveira, Azauri Albano-
dc.contributor.authorGoedtel, Alessandro-
dc.contributor.authorAmaral Serni, Paulo Jose-
dc.date.accessioned2014-05-20T15:33:18Z-
dc.date.accessioned2016-10-25T18:09:50Z-
dc.date.available2014-05-20T15:33:18Z-
dc.date.available2016-10-25T18:09:50Z-
dc.date.issued2011-03-01-
dc.identifierhttp://dx.doi.org/10.1016/j.asoc.2010.07.017-
dc.identifier.citationApplied Soft Computing. Amsterdam: Elsevier B.V., v. 11, n. 2, p. 2178-2185, 2011.-
dc.identifier.issn1568-4946-
dc.identifier.urihttp://hdl.handle.net/11449/41969-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/41969-
dc.description.abstractIn this paper, artificial neural networks are employed in a novel approach to identify harmonic components of single-phase nonlinear load currents, whose amplitude and phase angle are subject to unpredictable changes, even in steady-state. The first six harmonic current components are identified through the variation analysis of waveform characteristics. The effectiveness of this method is tested by applying it to the model of a single-phase active power filter, dedicated to the selective compensation of harmonic current drained by an AC controller. Simulation and experimental results are presented to validate the proposed approach. (C) 2010 Elsevier B. V. All rights reserved.en
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.format.extent2178-2185-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectHarmonic distortionen
dc.subjectNeural network applicationen
dc.subjectSingle-phase power systemen
dc.subjectPower electronicsen
dc.titleHarmonic identification using parallel neural networks in single-phase systemsen
dc.typeoutro-
dc.contributor.institutionFed Univ Technol UTFPR-
dc.contributor.institutionUniversidade Federal do ABC (UFABC)-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationFed Univ Technol UTFPR, Dept Elect Engn, BR-86300000 Cornelio Procopio, PR, Brazil-
dc.description.affiliationFed Univ ABC UFABC, CECS, BR-09210170 Santo Andre, SP, Brazil-
dc.description.affiliationUniv São Paulo USP, Dept Elect Engn, BR-13566590 São Carlos, SP, Brazil-
dc.description.affiliationSão Paulo State Univ UNESP, FEB, BR-17033360 Bauru, SP, Brazil-
dc.description.affiliationUnespSão Paulo State Univ UNESP, FEB, BR-17033360 Bauru, SP, Brazil-
dc.description.sponsorshipIdCNPq: 142128/2005-8-
dc.description.sponsorshipIdCNPq: 474290/2008-5-
dc.description.sponsorshipIdFAPESP: 06/56093-3-
dc.identifier.doi10.1016/j.asoc.2010.07.017-
dc.identifier.wosWOS:000286373200070-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofApplied Soft Computing-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.