Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/42062
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chuquipoma, J. A. D. | - |
dc.contributor.author | Raposo, C. A. | - |
dc.contributor.author | Bastos, W. D. | - |
dc.date.accessioned | 2014-05-20T15:33:27Z | - |
dc.date.accessioned | 2016-10-25T18:10:00Z | - |
dc.date.available | 2014-05-20T15:33:27Z | - |
dc.date.available | 2016-10-25T18:10:00Z | - |
dc.date.issued | 2012-07-01 | - |
dc.identifier | http://dx.doi.org/10.1007/s10883-012-9150-7 | - |
dc.identifier.citation | Journal of Dynamical and Control Systems. New York: Springer/plenum Publishers, v. 18, n. 3, p. 397-417, 2012. | - |
dc.identifier.issn | 1079-2724 | - |
dc.identifier.uri | http://hdl.handle.net/11449/42062 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/42062 | - |
dc.description.abstract | We consider a control problem where the state variable is defined as the solution of a variational inequality. This system describes the vertical displacement of points of a thin plate with the presence of crack inside [7]. As the control we define the force that originates the deection of the plate. In order to get the system of optimality for the control problem we use a penalized problem [1] and its reformation as a Lagrangian problem. We prove the existence of a Lagrange multiplier to obtain a system of optimality to the exact problem via Lagrangian. Applying the method of bounded increments [19] we get the final result that characterizes the optimal state and control. | en |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | - |
dc.format.extent | 397-417 | - |
dc.language.iso | eng | - |
dc.publisher | Springer/plenum Publishers | - |
dc.source | Web of Science | - |
dc.subject | Optimal control | en |
dc.subject | optimality system | en |
dc.subject | penalty problem | en |
dc.subject | method of bounded increments | en |
dc.title | Optimal control problem for deflection plate with crack | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Federal de São João del-Rei (UFSJ) | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Univ Fed Sao Joao del Rei, Dept Math UFSJ, Sao Joao Del Rei, MG, Brazil | - |
dc.description.affiliation | São Paulo State Univ, Dept Math UNESP, São Paulo, Brazil | - |
dc.description.affiliationUnesp | São Paulo State Univ, Dept Math UNESP, São Paulo, Brazil | - |
dc.identifier.doi | 10.1007/s10883-012-9150-7 | - |
dc.identifier.wos | WOS:000306547800007 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Journal of Dynamical and Control Systems | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.