You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/4833
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPimentel, Eduardo da Cruz Gouveia-
dc.contributor.authorQueiroz, Sandra Aidar de-
dc.contributor.authorCarvalheiro, Roberto-
dc.contributor.authorFries, Luiz Alberto-
dc.date.accessioned2014-05-20T13:18:58Z-
dc.date.available2014-05-20T13:18:58Z-
dc.date.issued2007-01-01-
dc.identifierhttp://dx.doi.org/10.1590/S1415-47572007000400006-
dc.identifier.citationGenetics and Molecular Biology. Sociedade Brasileira de Genética, v. 30, n. 3, p. 536-544, 2007.-
dc.identifier.issn1415-4757-
dc.identifier.urihttp://hdl.handle.net/11449/4833-
dc.description.abstractThe problem of multicollinearity in regression analysis was studied. Ridge regression (RR) techniques were used to estimate parameters affecting the performance of crossbred calves raised in tropical and subtropical regions by a model including additive, dominance, joint additive or profit heterosis and epistatic effects and their interactions with latitude in an attempt to model genotype by environment interactions. A software was developed in Fortran 77 to perform five variant types of RR: the originally proposed method; the method implemented by SAS; and three methods of weighting the RR parameter lambda. Three mathematical criteria were tested with the aim of choosing a value for the lambda coefficient: the sum and the harmonic mean of the absolute Student t-values and the value of lambda at which all variance inflation factors (VIF) became lower than 300. Prediction surfaces obtained from estimated coefficients were used to compare the five methods and three criteria. It was concluded that RR could be a good alternative to overcome multicollinearity problems. For all the methods tested, acceptable prediction surfaces could be obtained when the VIF criterion was employed. This mathematical criterion is thus recommended as an auxiliary tool for choosing lambda.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.format.extent536-544-
dc.language.isoeng-
dc.publisherSociedade Brasileira de Genética-
dc.sourceSciELO-
dc.subjectCrossbreedingen
dc.subjectepistasisen
dc.subjectgenotype by environment interactionen
dc.subjectheterosisen
dc.subjectmulticollinearityen
dc.titleUse of ridge regression for the prediction of early growth performance in crossbred calvesen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionGenSys Consultores Associados S/S Ltda.-
dc.contributor.institutionLagoa da Serra Ltda (Holland Genetics)-
dc.description.affiliationUniversidade Estadual Paulista Faculdade de Ciências Agrárias e Veterinárias Departamento de Zootecnia-
dc.description.affiliationGenSys Consultores Associados S/S Ltda.-
dc.description.affiliationLagoa da Serra Ltda (Holland Genetics)-
dc.description.affiliationUnespUniversidade Estadual Paulista Faculdade de Ciências Agrárias e Veterinárias Departamento de Zootecnia-
dc.identifier.doi10.1590/S1415-47572007000400006-
dc.identifier.scieloS1415-47572007000400006-
dc.rights.accessRightsAcesso aberto-
dc.identifier.fileS1415-47572007000400006.pdf-
dc.relation.ispartofGenetics and Molecular Biology-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.