You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/4834
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEl Faro, Lenira-
dc.contributor.authorCardoso, Vera Lucia-
dc.contributor.authorAlbuquerque, Lucia Galvão de-
dc.date.accessioned2014-05-20T13:18:58Z-
dc.date.available2014-05-20T13:18:58Z-
dc.date.issued2008-01-01-
dc.identifierhttp://dx.doi.org/10.1590/S1415-47572008000400011-
dc.identifier.citationGenetics and Molecular Biology. Sociedade Brasileira de Genética, v. 31, n. 3, p. 665-673, 2008.-
dc.identifier.issn1415-4757-
dc.identifier.urihttp://hdl.handle.net/11449/4834-
dc.description.abstractRandom regression models (RRM) were used to estimate covariance functions for 2,155 first-lactation milk yields of native Brazilian Caracu heifers. The models included contemporary group (defined as year-month of test and paddock) fixed effects, and quadratic effect of age of cow at calving. Genetic and permanent environmental effects were fitted by a random regression model and Legendre polynomials of days in milk (DIM). Schwarz's Bayesian information criteria (BIC) indicated that the best RRM assumed a six coefficient function for both random effects and a sixth order variance function for residual structure. Akaike's information criteria suggested a model with the same number of coefficients for both effects and a residual structure fitted by a step function with 15 variances. Phenotypic, additive genetic, permanent environmental and residual variances were higher at the beginning and declined during lactation. The RRM heritability estimates were 0.09 to 0.26 and generally higher at the beginning and end of lactation. Some unexpected negative genetic correlations emerged when higher order covariance functions were used. A model with four coefficients for additive genetic covariance function explains more parsimoniously the changes in genetic variation with DIM since the genetic parameter was more acceptable and BIC was close to that for a six coefficient covariance function.en
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.format.extent665-673-
dc.language.isoeng-
dc.publisherSociedade Brasileira de Genética-
dc.sourceSciELO-
dc.subjectCovariance functionsen
dc.subjectDairy cattleen
dc.subjectGenetic parameteren
dc.subjectLongitudinal dataen
dc.subjectMilk yielden
dc.titleVariance component estimates applying random regression models for test-day milk yield in Caracu heifers (Bos taurus Artiodactyla, Bovidae)en
dc.typeoutro-
dc.contributor.institutionAgência Paulista de Tecnologia dos Agronegócios (APTA)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationSecretaria da Agricultura e Abastecimento Agência Paulista de Tecnologia dos Agronegócios-
dc.description.affiliationUniversidade Estadual Paulista Júlio de Mesquita Filho Faculdade de Ciências Agrárias e Veterinárias Departamento de Zootecnia-
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho Faculdade de Ciências Agrárias e Veterinárias Departamento de Zootecnia-
dc.identifier.doi10.1590/S1415-47572008000400011-
dc.identifier.scieloS1415-47572008000400011-
dc.identifier.wosWOS:000258695800011-
dc.rights.accessRightsAcesso aberto-
dc.identifier.fileS1415-47572008000400011.pdf-
dc.relation.ispartofGenetics and Molecular Biology-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.