You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/5456
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPereira, Luis A. M.-
dc.contributor.authorNakamura, Rodrigo Y. M.-
dc.contributor.authorde Souza, Guilherme F. S.-
dc.contributor.authorMartins, Dagoberto-
dc.contributor.authorPapa, Joao P.-
dc.date.accessioned2014-05-20T13:20:03Z-
dc.date.accessioned2016-10-25T16:41:37Z-
dc.date.available2014-05-20T13:20:03Z-
dc.date.available2016-10-25T16:41:37Z-
dc.date.issued2012-09-01-
dc.identifierhttp://dx.doi.org/10.1016/j.compag.2012.05.015-
dc.identifier.citationComputers and Electronics In Agriculture. Oxford: Elsevier B.V., v. 87, p. 56-63, 2012.-
dc.identifier.issn0168-1699-
dc.identifier.urihttp://hdl.handle.net/11449/5456-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/5456-
dc.description.abstractAquatic weed control through chemical products has attracted much attention in the last years, mainly because of the ecological disorder caused by such plants, and also the consequences to the economical activities. However, this kind of control has been carried out in a non-automatic way by technicians, and may be a not healthy policy, since each species may react differently to the same herbicide. Thus, this work proposes the automatic identification of some species by means of supervised pattern recognition techniques and shape descriptors in order to compose a nearby future expert system for automatic application of the correct herbicide. Experiments using some state-of-the-art techniques have shown the robustness of the employed pattern recognition techniques. (c) 2012 Elsevier B.V. All rights reserved.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.format.extent56-63-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectAquatic weeden
dc.subjectOptimum-path foresten
dc.subjectSupport vector machinesen
dc.subjectNaive Bayesen
dc.subjectArtificial neural networksen
dc.subjectShape analysisen
dc.titleAquatic weed automatic classification using machine learning techniquesen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUNESP São Paulo State Univ, Dept Comp, Bauru, Brazil-
dc.description.affiliationUNESP São Paulo State Univ, Dept Plant Prod, Botucatu, SP, Brazil-
dc.description.affiliationUnespUNESP São Paulo State Univ, Dept Comp, Bauru, Brazil-
dc.description.affiliationUnespUNESP São Paulo State Univ, Dept Plant Prod, Botucatu, SP, Brazil-
dc.description.sponsorshipIdFAPESP: 09/16206-1-
dc.description.sponsorshipIdFAPESP: 10/12222-0-
dc.description.sponsorshipIdFAPESP: 10/11676-7-
dc.description.sponsorshipIdFAPESP: 11/14058-5-
dc.description.sponsorshipIdFAPESP: 11/14094-1-
dc.description.sponsorshipIdCNPq: 303182/2011-3-
dc.identifier.doi10.1016/j.compag.2012.05.015-
dc.identifier.wosWOS:000307681000007-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofComputers and Electronics in Agriculture-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.