Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/63861
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ferreira, L. A. | - |
dc.contributor.author | Gomes, J. F. | - |
dc.contributor.author | Zimerman, A. H. | - |
dc.date.accessioned | 2014-05-27T04:45:28Z | - |
dc.date.accessioned | 2016-10-25T18:12:16Z | - |
dc.date.available | 2014-05-27T04:45:28Z | - |
dc.date.available | 2016-10-25T18:12:16Z | - |
dc.date.issued | 1988-11-24 | - |
dc.identifier | http://dx.doi.org/10.1016/0370-2693(88)91378-0 | - |
dc.identifier.citation | Physics Letters B, v. 214, n. 3, p. 367-370, 1988. | - |
dc.identifier.issn | 0370-2693 | - |
dc.identifier.uri | http://hdl.handle.net/11449/63861 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/63861 | - |
dc.description.abstract | The construction of Lie algebras in terms of Jordan algebra generators is discussed. The key to the construction is the triality relation already incorporated into matrix products. A generalisation to Kac-Moody algebras in terms of vertex operators is proposed and may provide a clue for the construction of new representations of Kac-Moody algebras in terms of Jordan fields. © 1988. | en |
dc.format.extent | 367-370 | - |
dc.language.iso | eng | - |
dc.source | Scopus | - |
dc.title | Vertex operators and Jordan fields | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Instituto de Fisica Teorica - UNESP, Rua Pamplona 145, 01405 Sao Paulo, SP | - |
dc.description.affiliationUnesp | Instituto de Fisica Teorica - UNESP, Rua Pamplona 145, 01405 Sao Paulo, SP | - |
dc.identifier.doi | 10.1016/0370-2693(88)91378-0 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Physics Letters B | - |
dc.identifier.scopus | 2-s2.0-30244520343 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.