You are in the accessibility menu

Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMarar, João Fernando-
dc.contributor.authorDe Barros Carvalho Filho, Edson Costa-
dc.contributor.authorDos Santos, José Dias-
dc.identifier.citationEuropean Space Agency, (Special Publication) ESA SP, n. 407, p. 211-216, 1997.-
dc.description.abstractThe merit of the Karhunen-Loève transform is well known. Since its basis is the eigenvector set of the covariance matrix, a statistical, not functional, representation of the variance in pattern ensembles is generated. By using the Karhunen-Loève transform coefficients as a natural feature representation of a character image, the eigenvector set can be regarded as an feature extractor for a classifier.en
dc.subjectKarhunen-Loève Transform-
dc.subjectNeural Networks-
dc.subjectPattern Recognition-
dc.titleRede neural não supervisionada baseada em transformada Karhunen-Loève para processamento, compressão e reconhecimento de imagenspt
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Federal de Pernambuco (UFPE)-
dc.description.affiliationUNESP - Univ. Estadual Paulista Lab. de Sistemas de Tempo Real Depto. de Computação, Bauru, SP-
dc.description.affiliationUFPE - Univ. Federal de Pernambuco DI - Depto. de Informática, CP 7851, 50732-970, Recife, PE-
dc.description.affiliationUnespUNESP - Univ. Estadual Paulista Lab. de Sistemas de Tempo Real Depto. de Computação, Bauru, SP-
dc.rights.accessRightsAcesso aberto-
dc.relation.ispartofEuropean Space Agency, (Special Publication) ESA SP-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.