Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/65259
Registro de metadados completo
Campo DCValorIdioma
dc.contributor.authorMarana, A. N.-
dc.contributor.authorVelastin, S. A.-
dc.contributor.authorCosta, L. F.-
dc.contributor.authorLotufo, R. A.-
dc.date.accessioned2014-05-27T11:18:18Z-
dc.date.accessioned2016-10-25T18:14:44Z-
dc.date.available2014-05-27T11:18:18Z-
dc.date.available2016-10-25T18:14:44Z-
dc.date.issued1997-12-01-
dc.identifierhttp://dx.doi.org/10.1049/ic:19970387-
dc.identifier.citationIEE Colloquium (Digest), n. 74, 1997.-
dc.identifier.issn0963-3308-
dc.identifier.urihttp://hdl.handle.net/11449/65259-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/65259-
dc.description.abstractHuman beings perceive images through their properties, like colour, shape, size, and texture. Texture is a fertile source of information about the physical environment. Images of low density crowds tend to present coarse textures, while images of dense crowds tend to present fine textures. This paper describes a new technique for automatic estimation of crowd density, which is a part of the problem of automatic crowd monitoring, using texture information based on grey-level transition probabilities on digitised images. Crowd density feature vectors are extracted from such images and used by a self organising neural network which is responsible for the crowd density estimation. Results obtained respectively to the estimation of the number of people in a specific area of Liverpool Street Railway Station in London (UK) are presented.en
dc.language.isoeng-
dc.sourceScopus-
dc.titleEstimation of crowd density using image processingen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionKing's College London-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.description.affiliationDEMAC IGCE UNESP, Rio Claro, SP-
dc.description.affiliationEEE King's College London, London-
dc.description.affiliationIFSC USP, São Carlos, SP-
dc.description.affiliationDCA FEEC UNICAMP, Campinas, SP-
dc.description.affiliationUnespDEMAC IGCE UNESP, Rio Claro, SP-
dc.identifier.doi10.1049/ic:19970387-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofIEE Colloquium (Digest)-
dc.identifier.scopus2-s2.0-0031083814-
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.