You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/65576
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPianaro, S. A.-
dc.contributor.authorBueno, Paulo Roberto-
dc.contributor.authorOlivi, P.-
dc.contributor.authorLongo, Elson-
dc.contributor.authorVarela, José Arana-
dc.date.accessioned2014-05-27T11:19:38Z-
dc.date.accessioned2016-10-25T18:15:21Z-
dc.date.available2014-05-27T11:19:38Z-
dc.date.available2016-10-25T18:15:21Z-
dc.date.issued1998-12-01-
dc.identifierhttp://dx.doi.org/10.1023/A:1008821808693-
dc.identifier.citationJournal of Materials Science: Materials in Electronics, v. 9, n. 2, p. 159-165, 1998.-
dc.identifier.issn0957-4522-
dc.identifier.urihttp://hdl.handle.net/11449/65576-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/65576-
dc.description.abstractThe non-linear electrical properties of CoO-doped and Nb205-doped SnO2 ceramics were characterized. X-ray diffraction and scanning electron microscopy indicated that the system is single phase. The electrical conduction mechanism for low applied electrical field was associated with thermionic emission of the Schottky type. An atomic defect model based on the Schottky double-barrier formation was proposed to explain the origin of the potential barrier at the ceramic grain boundaries. These defects create depletion layers at grain boundaries, favouring electron tunnelling at high values of applied electrical field. © 1998 Chapman & Hall.en
dc.format.extent159-165-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectCeramic materials-
dc.subjectCrystal defects-
dc.subjectCrystal microstructure-
dc.subjectElectric conductivity-
dc.subjectElectric field effects-
dc.subjectElectric properties-
dc.subjectElectron tunneling-
dc.subjectGrain boundaries-
dc.subjectMathematical models-
dc.subjectScanning electron microscopy-
dc.subjectSemiconducting tin compounds-
dc.subjectX ray diffraction analysis-
dc.subjectCobalt compounds-
dc.subjectDoping (additives)-
dc.subjectNiobium compounds-
dc.subjectPhase composition-
dc.subjectThermionic emission-
dc.subjectTin compounds-
dc.subjectAtomic defect model-
dc.subjectNonlinear electrical properties-
dc.subjectSchottky double barrier formation-
dc.subjectVoltage barrier-
dc.subjectDouble barrier formation-
dc.subjectElectric conduction mechanism-
dc.subjectTin dioxide-
dc.subjectVaristors-
dc.titleElectrical properties of the SnO2-based varistoren
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual de Ponta Grossa (UEPG)-
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationDepto. de Engenharia de Materiais UEPG, 84031-510, Ponta Grossa, PR-
dc.description.affiliationDepartamento de Química Univ. Federal de São Carlos, PO Box 676, 13565-905, São Carlos, SP-
dc.description.affiliationInstituto de Química Universidade Estadual Paulista, PO Box 355, 14800-905 Araraquara, SP-
dc.description.affiliationUnespInstituto de Química Universidade Estadual Paulista, PO Box 355, 14800-905 Araraquara, SP-
dc.identifier.doi10.1023/A:1008821808693-
dc.identifier.wosWOS:000072708700012-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofJournal of Materials Science: Materials in Electronics-
dc.identifier.scopus2-s2.0-0032045617-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.