You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/65595
Title: 
A refinement of the gauss-lucas theorem
Author(s): 
Dimitrov, Dimitar K.
Institution: 
Universidade Estadual Paulista (UNESP)
ISSN: 
0002-9939
Abstract: 
The classical Gauss-Lucas Theorem states that all the critical points (zeros of the derivative) of a nonconstant polynomial p lie in the convex hull H of the zeros of p. It is proved that, actually, a subdomain of H contains the critical points of p. ©1998 American Mathematical Society.
Issue Date: 
1-Dec-1998
Citation: 
Proceedings of the American Mathematical Society, v. 126, n. 7, p. 2065-2070, 1998.
Time Duration: 
2065-2070
Keywords: 
Nontrivial critical point of a polynomial
Source: 
http://dx.doi.org/10.1090/S0002-9939-98-04381-0
URI: 
Access Rights: 
Acesso aberto
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/65595
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.