You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/65595
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDimitrov, Dimitar K.-
dc.date.accessioned2014-05-27T11:19:39Z-
dc.date.accessioned2016-10-25T18:15:23Z-
dc.date.available2014-05-27T11:19:39Z-
dc.date.available2016-10-25T18:15:23Z-
dc.date.issued1998-12-01-
dc.identifierhttp://dx.doi.org/10.1090/S0002-9939-98-04381-0-
dc.identifier.citationProceedings of the American Mathematical Society, v. 126, n. 7, p. 2065-2070, 1998.-
dc.identifier.issn0002-9939-
dc.identifier.urihttp://hdl.handle.net/11449/65595-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/65595-
dc.description.abstractThe classical Gauss-Lucas Theorem states that all the critical points (zeros of the derivative) of a nonconstant polynomial p lie in the convex hull H of the zeros of p. It is proved that, actually, a subdomain of H contains the critical points of p. ©1998 American Mathematical Society.en
dc.format.extent2065-2070-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectNontrivial critical point of a polynomial-
dc.titleA refinement of the gauss-lucas theoremen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationDepartamento de CiêNcias de ComputaçÀO E EstatíStica Universidade Estadual Paulista, 15054-000 SãO José, Do Rio Preto, SP-
dc.description.affiliationUnespDepartamento de CiêNcias de ComputaçÀO E EstatíStica Universidade Estadual Paulista, 15054-000 SãO José, Do Rio Preto, SP-
dc.identifier.doi10.1090/S0002-9939-98-04381-0-
dc.identifier.wosWOS:000074694200025-
dc.rights.accessRightsAcesso aberto-
dc.identifier.file2-s2.0-22044440822.pdf-
dc.relation.ispartofProceedings of the American Mathematical Society-
dc.identifier.scopus2-s2.0-22044440822-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.