Utilize este identificador para citar ou criar um link para este item:
http://acervodigital.unesp.br/handle/11449/65736
Registro de metadados completo
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Pereira, João Antonio | - |
dc.contributor.author | Lopes Jr., Vicente | - |
dc.contributor.author | Weber, Hans Ingo | - |
dc.date.accessioned | 2014-05-27T11:19:43Z | - |
dc.date.accessioned | 2016-10-25T18:15:38Z | - |
dc.date.available | 2014-05-27T11:19:43Z | - |
dc.date.available | 2016-10-25T18:15:38Z | - |
dc.date.issued | 1999-03-01 | - |
dc.identifier | http://revistas.abcm.org.br/indexed/vol_xxi_-_n_01_-_1999.pdf | - |
dc.identifier.citation | Revista Brasileira de Ciencias Mecanicas/Journal of the Brazilian Society of Mechanical Sciences, v. 21, n. 1, p. 99-108, 1999. | - |
dc.identifier.issn | 0100-7386 | - |
dc.identifier.uri | http://hdl.handle.net/11449/65736 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/65736 | - |
dc.description.abstract | In this article, an implementation of structural health monitoring process automation based on vibration measurements is proposed. The work presents an alternative approach which intent is to exploit the capability of model updating techniques associated to neural networks to be used in a process of automation of fault detection. The updating procedure supplies a reliable model which permits to simulate any damage condition in order to establish direct correlation between faults and deviation in the response of the model. The ability of the neural networks to recognize, at known signature, changes in the actual data of a model in real time are explored to investigate changes of the actual operation conditions of the system. The learning of the network is performed using a compressed spectrum signal created for each specific type of fault. Different fault conditions for a frame structure are evaluated using simulated data as well as measured experimental data. | en |
dc.format.extent | 99-108 | - |
dc.language.iso | eng | - |
dc.source | Scopus | - |
dc.subject | Dynamic response | - |
dc.subject | Learning systems | - |
dc.subject | Maintenance | - |
dc.subject | Mathematical models | - |
dc.subject | Structural analysis | - |
dc.subject | Fault detection | - |
dc.subject | Structural health monitoring | - |
dc.subject | Neural networks | - |
dc.title | Automation in fault detection using neural network and model updating | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | - |
dc.description.affiliation | UNESP - Univ. Estadual Paulista Faculdade Engenharia Ilha Solteira Departamento Engenharia Mecanica, 15385-000 Ilha Solteira, SP | - |
dc.description.affiliation | UNICAMP - Univ. Estadual de Campinas Faculdade de Engenharia Mecanica Depto. de Projeto Mecânico, 13083-970 Campinas, SP | - |
dc.description.affiliationUnesp | UNESP - Univ. Estadual Paulista Faculdade Engenharia Ilha Solteira Departamento Engenharia Mecanica, 15385-000 Ilha Solteira, SP | - |
dc.rights.accessRights | Acesso aberto | - |
dc.identifier.file | 2-s2.0-0032678595.pdf | - |
dc.relation.ispartof | Revista Brasileira de Ciencias Mecanicas/Journal of the Brazilian Society of Mechanical Sciences | - |
dc.identifier.scopus | 2-s2.0-0032678595 | - |
Aparece nas coleções: | Artigos, TCCs, Teses e Dissertações da Unesp |
Não há nenhum arquivo associado com este item.
Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.