You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/65954
Full metadata record
DC FieldValueLanguage
dc.contributor.authorda Silva, Ivan Nunes-
dc.contributor.authorde Souza, Andre Nunes-
dc.contributor.authorBordon, Mario Eduardo-
dc.date.accessioned2014-05-27T11:19:49Z-
dc.date.accessioned2016-10-25T18:16:01Z-
dc.date.available2014-05-27T11:19:49Z-
dc.date.available2016-10-25T18:16:01Z-
dc.date.issued1999-12-01-
dc.identifierhttp://dx.doi.org/10.1109/IJCNN.1999.830762-
dc.identifier.citationProceedings of the International Joint Conference on Neural Networks, v. 6, p. 3816-3820.-
dc.identifier.urihttp://hdl.handle.net/11449/65954-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/65954-
dc.description.abstractThis paper describes a novel approach for mapping lightning models using artificial neural networks. The networks acts as identifier of structural features of the lightning models so that output parameters can be estimated and generalized from an input parameter set. Simulation examples are presented to validate the proposed approach. More specifically, the neural networks are used to compute electrical field intensity and critical disruptive voltage taking into account several atmospheric and structural factors, such as pressure, temperature, humidity, distance between phases, height of bus bars, and wave forms. A comparative analysis with other approaches is also provided to illustrate this new methodology.en
dc.format.extent3816-3820-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectAtmospheric humidity-
dc.subjectComputer simulation-
dc.subjectElectric fields-
dc.subjectElectric potential-
dc.subjectLightning-
dc.subjectMathematical models-
dc.subjectPressure effects-
dc.subjectThermal effects-
dc.subjectWaveform analysis-
dc.subjectCritical disruptive voltage-
dc.subjectElectrical field intensity-
dc.subjectNeural networks-
dc.titleEvaluation and identification of lightning models by artificial neural networksen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationState Univ of Sao Paulo - UNESP, Sao Paulo-
dc.description.affiliationUnespState Univ of Sao Paulo - UNESP, Sao Paulo-
dc.identifier.doi10.1109/IJCNN.1999.830762-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofProceedings of the International Joint Conference on Neural Networks-
dc.identifier.scopus2-s2.0-0033333480-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.