Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/66314
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Andreani, R. | - |
dc.contributor.author | Martínez, J. M. | - |
dc.contributor.author | Svaiter, B. F. | - |
dc.date.accessioned | 2014-05-27T11:19:58Z | - |
dc.date.accessioned | 2016-10-25T18:16:40Z | - |
dc.date.available | 2014-05-27T11:19:58Z | - |
dc.date.available | 2016-10-25T18:16:40Z | - |
dc.date.issued | 2000-12-01 | - |
dc.identifier | http://dx.doi.org/10.1080/01630560008816976 | - |
dc.identifier.citation | Numerical Functional Analysis and Optimization, v. 21, n. 5-6, p. 589-600, 2000. | - |
dc.identifier.issn | 0163-0563 | - |
dc.identifier.uri | http://hdl.handle.net/11449/66314 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/66314 | - |
dc.description.abstract | A variational inequality problem (VIP) satisfying a constraint qualification can be reduced to a mixed complementarity problem (MCP). Monotonicity of the VIP implies that the MCP is also monotone. Introducing regularizing perturbations, a sequence of strictly monotone mixed complementarity problems is generated. It is shown that, if the original problem is solvable, the sequence of computable inexact solutions of the strictly monotone MCP's is bounded and every accumulation point is a solution. Under an additional condition on the precision used for solving each subproblem, the sequence converges to the minimum norm solution of the MCP. Copyright © 2000 by Marcel Dekker, Inc. | en |
dc.format.extent | 589-600 | - |
dc.language.iso | eng | - |
dc.source | Scopus | - |
dc.subject | Complementarity | - |
dc.subject | Inexact solutions | - |
dc.subject | Minimization algorithms | - |
dc.subject | Perturbations | - |
dc.subject | Reformulation | - |
dc.subject | Variational inequalities | - |
dc.subject | Algorithms | - |
dc.subject | Constraint theory | - |
dc.subject | Convergence of numerical methods | - |
dc.subject | Mathematical operators | - |
dc.subject | Optimization | - |
dc.subject | Perturbation techniques | - |
dc.subject | Mixed complementarity problems | - |
dc.subject | Monotone operators | - |
dc.subject | Variational inequality problem | - |
dc.subject | Variational techniques | - |
dc.title | On the regularization of mixed complementarity problems | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | - |
dc.contributor.institution | IMPA | - |
dc.description.affiliation | Department of Computer Science and Statistics University of the State of S. Paulo (UNESP), C.P. 136, CEP 15054-000, Sao Jose Rio Preto-SP | - |
dc.description.affiliation | Department of Applied Mathematics IMECC-UNICAMP University of Camp-inas, CP 6065, 13081-970 Campinas SP | - |
dc.description.affiliation | IMPA | - |
dc.description.affiliationUnesp | Department of Computer Science and Statistics University of the State of S. Paulo (UNESP), C.P. 136, CEP 15054-000, Sao Jose Rio Preto-SP | - |
dc.identifier.doi | 10.1080/01630560008816976 | - |
dc.identifier.wos | WOS:000089189600004 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Numerical Functional Analysis and Optimization | - |
dc.identifier.scopus | 2-s2.0-0342521589 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.