You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/66323
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDimitrov, Dimitar K.-
dc.contributor.authorVan Assche, Walter-
dc.date.accessioned2014-05-27T11:19:58Z-
dc.date.accessioned2016-10-25T18:16:41Z-
dc.date.available2014-05-27T11:19:58Z-
dc.date.available2016-10-25T18:16:41Z-
dc.date.issued2000-12-01-
dc.identifierhttp://dx.doi.org/10.1090/S0002-9939-00-05638-0-
dc.identifier.citationProceedings of the American Mathematical Society, v. 128, n. 12, p. 3621-3628, 2000.-
dc.identifier.issn0002-9939-
dc.identifier.urihttp://hdl.handle.net/11449/66323-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/66323-
dc.description.abstractThe problem of existence and uniqueness of polynomial solutions of the Lamé differential equation A(x)y″ + 2B(x)y′ + C(x)y = 0, where A(x),B(x) and C(x) are polynomials of degree p + 1,p and p - 1, is under discussion. We concentrate on the case when A(x) has only real zeros aj and, in contrast to a classical result of Heine and Stieltjes which concerns the case of positive coefficients rj in the partial fraction decomposition B(x)/A(x) = ∑j p=0 rj/(x - aj), we allow the presence of both positive and negative coefficients rj. The corresponding electrostatic interpretation of the zeros of the solution y(x) as points of equilibrium in an electrostatic field generated by charges rj at aj is given. As an application we prove that the zeros of the Gegenbauer-Laurent polynomials are the points of unique equilibrium in a field generated by two positive and two negative charges. © 2000 American Mathematical Society.en
dc.format.extent3621-3628-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectElectrostatic equilibrium-
dc.subjectGegenbauer polynomials-
dc.subjectLamé differential equation-
dc.subjectLaurent polynomials-
dc.titleLamé differential equations and electrostaticsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionKatholieke Universiteit Leuven-
dc.description.affiliationDepartamento de Ciências de Computação e EstatíStica Universidade Estadual Paulista, 15054-000 Sao Jose, Rio Preto, SP-
dc.description.affiliationDepartment of Mathematics Katholieke Universiteit Leuven, Celestijnenlaan 200 B, B-3001 Heverlee (Leuven)-
dc.description.affiliationUnespDepartamento de Ciências de Computação e EstatíStica Universidade Estadual Paulista, 15054-000 Sao Jose, Rio Preto, SP-
dc.identifier.doi10.1090/S0002-9939-00-05638-0-
dc.identifier.wosWOS:000089527300023-
dc.rights.accessRightsAcesso aberto-
dc.identifier.file2-s2.0-23044522838.pdf-
dc.relation.ispartofProceedings of the American Mathematical Society-
dc.identifier.scopus2-s2.0-23044522838-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.