You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/66338
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUlson, Jose Alfredo Covolan-
dc.contributor.authorda Silva, Ivan Nunes-
dc.contributor.authorBenez, Sergio Hugo-
dc.contributor.authorBoas, Roberto L V-
dc.date.accessioned2014-05-27T11:19:59Z-
dc.date.accessioned2016-10-25T18:16:42Z-
dc.date.available2014-05-27T11:19:59Z-
dc.date.available2016-10-25T18:16:42Z-
dc.date.issued2000-12-01-
dc.identifierhttp://dx.doi.org/10.1109/ICSMC.2000.884399-
dc.identifier.citationProceedings of the IEEE International Conference on Systems, Man and Cybernetics, v. 4, p. 2673-2678.-
dc.identifier.issn0884-3627-
dc.identifier.issn1062-922X-
dc.identifier.urihttp://hdl.handle.net/11449/66338-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/66338-
dc.description.abstractThe application of agricultural fertilizers using variable rates along the field can be made through fertility maps previously elaborated or through real-time sensors. In most of the cases applies maps previously elaborated. These maps are identified from analyzes done in soil samples collected regularly (a sample for each field cell) or irregularly along the field. At the moment, mathematical interpolation methods such as nearest neighbor, local average, weighted inverse distance, contouring and kriging are used for predicting the variables involved with elaboration of fertility maps. However, some of these methods present deficiencies that can generate different fertility maps for a same data set. Moreover, such methods can generate inprecise maps to be used in precision farming. In this paper, artificial neural networks have been applied for elaboration and identification of precise fertility maps which can reduce the production costs and environmental impacts.en
dc.format.extent2673-2678-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectFertilizersen
dc.subjectInterpolationen
dc.subjectMathematical modelsen
dc.subjectReal time systemsen
dc.subjectSensorsen
dc.subjectSoilsen
dc.subjectFertility mapsen
dc.subjectNeural networksen
dc.titleModeling and identification of fertility maps using artificial neural networksen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationFCA-UNESP, Botucatu-
dc.description.affiliationUnespFCA-UNESP, Botucatu-
dc.identifier.doi10.1109/ICSMC.2000.884399-
dc.identifier.wosWOS:000166106900465-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofProceedings of the IEEE International Conference on Systems, Man and Cybernetics-
dc.identifier.scopus2-s2.0-0034504123-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.