Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/6636
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Camargo, P. D. | - |
dc.contributor.author | Monico, JFG | - |
dc.contributor.author | Ferreira, LDD | - |
dc.date.accessioned | 2014-05-20T13:22:33Z | - |
dc.date.available | 2014-05-20T13:22:33Z | - |
dc.date.issued | 2000-01-01 | - |
dc.identifier | http://www.terrapub.co.jp/journals/EPS/abstract/5211/52111083.html | - |
dc.identifier.citation | Earth Planets and Space. Tokyo: Terra Scientific Publ Co, v. 52, n. 11, p. 1083-1089, 2000. | - |
dc.identifier.issn | 1343-8832 | - |
dc.identifier.uri | http://hdl.handle.net/11449/6636 | - |
dc.description.abstract | In the absence of the selective availability, which was turned off on May 1, 2000, the ionosphere can be the largest source of error in GPS positioning and navigation. Its effects on GPS observable cause a code delays and phase advances. The magnitude of this error is affected by the local time of the day, season, solar cycle, geographical location of the receiver and Earth's magnetic field. As it is well known, the ionosphere is the main drawback for high accuracy positioning, when using single frequency receivers, either for point positioning or relative positioning of medium and long baselines. The ionosphere effects were investigated in the determination of point positioning and relative positioning using single frequency data. A model represented by a Fourier series type was implemented and the parameters were estimated from data collected at the active stations of RBMC (Brazilian Network for Continuous Monitoring of GPS satellites). The data input were the pseudorange observables filtered by the carrier phase. Quality control was implemented in order to analyse the adjustment and to validate the significance of the estimated parameters. Experiments were carried out in the equatorial region, using data collected from dual frequency receivers. In order to validate the model, the estimated values were compared with ground truth. For point and relative positioning of baselines of approximately 100 km, the values of the discrepancies indicated an error reduction better than 80% and 50% respectively, compared to the processing without the ionospheric model. These results give an indication that more research has to be done in order to provide support to the L1 GPS users in the Equatorial region. | en |
dc.format.extent | 1083-1089 | - |
dc.language.iso | eng | - |
dc.publisher | Terra Scientific Publ Co | - |
dc.source | Web of Science | - |
dc.title | Application of ionospheric corrections in the equatorial region for L1 GPS users | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Universidade Federal do Paraná (UFPR) | - |
dc.description.affiliation | São Paulo State Univ, Dept Cartog, Ctr Educ 305, BR-19060900 Presidente Prudente, SP, Brazil | - |
dc.description.affiliation | Universidade Federal do Paraná (UFPF), Ctr Politecn, Dept Geomat, BR-81531990 Curitiba, Parana, Brazil | - |
dc.description.affiliationUnesp | São Paulo State Univ, Dept Cartog, Ctr Educ 305, BR-19060900 Presidente Prudente, SP, Brazil | - |
dc.identifier.wos | WOS:000166004800035 | - |
dc.rights.accessRights | Acesso aberto | - |
dc.identifier.file | WOS000166004800035.pdf | - |
dc.relation.ispartof | Earth Planets and Space | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.