You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/66413
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Zhen-
dc.contributor.authorWillett, Peter-
dc.contributor.authorDeaguiar, Paulo R.-
dc.contributor.authorWebster, John-
dc.date.accessioned2014-05-27T11:20:13Z-
dc.date.accessioned2016-10-25T18:16:51Z-
dc.date.available2014-05-27T11:20:13Z-
dc.date.available2016-10-25T18:16:51Z-
dc.date.issued2001-01-01-
dc.identifierhttp://dx.doi.org/10.1016/S0890-6955(00)00057-2-
dc.identifier.citationInternational Journal of Machine Tools and Manufacture, v. 41, n. 2, p. 283-309, 2001.-
dc.identifier.issn0890-6955-
dc.identifier.urihttp://hdl.handle.net/11449/66413-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/66413-
dc.description.abstractAn artificial neural network (ANN) approach is proposed for the detection of workpiece `burn', the undesirable change in metallurgical properties of the material produced by overly aggressive or otherwise inappropriate grinding. The grinding acoustic emission (AE) signals for 52100 bearing steel were collected and digested to extract feature vectors that appear to be suitable for ANN processing. Two feature vectors are represented: one concerning band power, kurtosis and skew; and the other autoregressive (AR) coefficients. The result (burn or no-burn) of the signals was identified on the basis of hardness and profile tests after grinding. The trained neural network works remarkably well for burn detection. Other signal-processing approaches are also discussed, and among them the constant false-alarm rate (CFAR) power law and the mean-value deviance (MVD) prove useful.en
dc.format.extent283-309-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectAcoustic emissions-
dc.subjectFeature extraction-
dc.subjectHardness-
dc.subjectNeural networks-
dc.subjectRegression analysis-
dc.subjectSteel-
dc.subjectTheorem proving-
dc.subjectAutoregressive (AR) coefficients-
dc.subjectMean-value deviance (MVD)-
dc.subjectGrinding (machining)-
dc.titleNeural network detection of grinding burn from acoustic emissionen
dc.typeoutro-
dc.contributor.institutionUniversity of Connecticut-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionGrinding Technology Centre-
dc.description.affiliationInfo. and Computing Systems Group Elec. and Syst. Eng. Dept., U-157 University of Connecticut, Storrs, CT 06268-2157-
dc.description.affiliationUniv. Estadual Paulista - Unesp Departamento de Engenharia Eletrica, Av. Luiz Edmundo C. Coube, s/n, Bauru, São Paulo-
dc.description.affiliationUnicorn International Grinding Technology Centre, Tuffley Crescent, Gloucester GL1 5NG-
dc.description.affiliationUnespUniv. Estadual Paulista - Unesp Departamento de Engenharia Eletrica, Av. Luiz Edmundo C. Coube, s/n, Bauru, São Paulo-
dc.identifier.doi10.1016/S0890-6955(00)00057-2-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofInternational Journal of Machine Tools and Manufacture-
dc.identifier.scopus2-s2.0-0035149341-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.