Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/66422
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Silva, I. N. da | - |
dc.contributor.author | Ulson, Jose Alfredo Covolan | - |
dc.contributor.author | Souza, A. N. de | - |
dc.date.accessioned | 2014-05-27T11:20:13Z | - |
dc.date.accessioned | 2016-10-25T18:16:52Z | - |
dc.date.available | 2014-05-27T11:20:13Z | - |
dc.date.available | 2016-10-25T18:16:52Z | - |
dc.date.issued | 2001-01-01 | - |
dc.identifier | http://dx.doi.org/10.1109/IJCNN.2001.938425 | - |
dc.identifier.citation | Proceedings of the International Joint Conference on Neural Networks, v. 3, p. 1744-1749. | - |
dc.identifier.uri | http://hdl.handle.net/11449/66422 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/66422 | - |
dc.description.abstract | The ability of neural networks to realize some complex nonlinear function makes them attractive for system identification. This paper describes a novel barrier method using artificial neural networks to solve robust parameter estimation problems for nonlinear model with unknown-but-bounded errors and uncertainties. This problem can be represented by a typical constrained optimization problem. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach. | en |
dc.format.extent | 1744-1749 | - |
dc.language.iso | eng | - |
dc.source | Scopus | - |
dc.subject | Computer simulation | - |
dc.subject | Errors | - |
dc.subject | Mathematical models | - |
dc.subject | Optimization | - |
dc.subject | Parameter estimation | - |
dc.subject | Barrier method | - |
dc.subject | Constrained nonlinear optimization | - |
dc.subject | Equilibrium point | - |
dc.subject | Modified Hopfield network | - |
dc.subject | Nonlinear model | - |
dc.subject | Unknown but bounded errors | - |
dc.subject | Valid subspace technique | - |
dc.subject | Neural networks | - |
dc.title | A barrier method for constrained nonlinear optimization using a modified Hopfield network | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | State University of São Paulo Department of Electrical Engineering, CP 473, CEP 17033-360 | - |
dc.identifier.doi | 10.1109/IJCNN.2001.938425 | - |
dc.identifier.wos | WOS:000172784800310 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Proceedings of the International Joint Conference on Neural Networks | - |
dc.identifier.scopus | 2-s2.0-0034862952 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.