You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/66422
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSilva, I. N. da-
dc.contributor.authorUlson, Jose Alfredo Covolan-
dc.contributor.authorSouza, A. N. de-
dc.date.accessioned2014-05-27T11:20:13Z-
dc.date.accessioned2016-10-25T18:16:52Z-
dc.date.available2014-05-27T11:20:13Z-
dc.date.available2016-10-25T18:16:52Z-
dc.date.issued2001-01-01-
dc.identifierhttp://dx.doi.org/10.1109/IJCNN.2001.938425-
dc.identifier.citationProceedings of the International Joint Conference on Neural Networks, v. 3, p. 1744-1749.-
dc.identifier.urihttp://hdl.handle.net/11449/66422-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/66422-
dc.description.abstractThe ability of neural networks to realize some complex nonlinear function makes them attractive for system identification. This paper describes a novel barrier method using artificial neural networks to solve robust parameter estimation problems for nonlinear model with unknown-but-bounded errors and uncertainties. This problem can be represented by a typical constrained optimization problem. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach.en
dc.format.extent1744-1749-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectComputer simulation-
dc.subjectErrors-
dc.subjectMathematical models-
dc.subjectOptimization-
dc.subjectParameter estimation-
dc.subjectBarrier method-
dc.subjectConstrained nonlinear optimization-
dc.subjectEquilibrium point-
dc.subjectModified Hopfield network-
dc.subjectNonlinear model-
dc.subjectUnknown but bounded errors-
dc.subjectValid subspace technique-
dc.subjectNeural networks-
dc.titleA barrier method for constrained nonlinear optimization using a modified Hopfield networken
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationState University of São Paulo Department of Electrical Engineering, CP 473, CEP 17033-360-
dc.identifier.doi10.1109/IJCNN.2001.938425-
dc.identifier.wosWOS:000172784800310-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofProceedings of the International Joint Conference on Neural Networks-
dc.identifier.scopus2-s2.0-0034862952-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.