You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/66538
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMishra, Amruta-
dc.contributor.authorPanda, P. K.-
dc.contributor.authorGreiner, W.-
dc.date.accessioned2014-05-27T11:20:17Z-
dc.date.accessioned2016-10-25T18:17:05Z-
dc.date.available2014-05-27T11:20:17Z-
dc.date.available2016-10-25T18:17:05Z-
dc.date.issued2001-07-01-
dc.identifierhttp://dx.doi.org/10.1088/0954-3899/27/7/314-
dc.identifier.citationJournal of Physics G: Nuclear and Particle Physics, v. 27, n. 7, p. 1561-1575, 2001.-
dc.identifier.issn0954-3899-
dc.identifier.urihttp://hdl.handle.net/11449/66538-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/66538-
dc.description.abstractWe derive the equation of state for hot nuclear matter using the Walecka model in a non-perturbative formalism. We include here the vacuum polarization effects arising from the nucleon and scalar mesons through a realignment of the vacuum. A ground state structure with baryon-antibaryon condensates yields the results obtained through the relativistic Hartree approximation of summing baryonic tadpole diagrams. Generalization of such a state to include the quantum effects for the scalar meson fields through the σ -meson condensates amounts to summing over a class of multiloop diagrams. The techniques of the thermofield dynamics method are used for the finite-temperature and finite-density calculations. The in-medium nucleon and sigma meson masses are also calculated in a self-consistent manner. We examine the liquid-gas phase transition at low temperatures (≈ 20 MeV), as well as apply the formalism to high temperatures to examine a possible chiral symmetry restoration phase transition.en
dc.format.extent1561-1575-
dc.language.isoeng-
dc.sourceScopus-
dc.titleQuantum vacuum in hot nuclear matter: A non-perturbative treatmenten
dc.typeoutro-
dc.contributor.institutionInstitute for Plasma Research-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionJ W Goethe Universität-
dc.description.affiliationInstitute for Plasma Research, Gandhinagar 382428-
dc.description.affiliationInst. de Fisica Teorica Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 São Paulo, SP-
dc.description.affiliationInst. für Theoretische Physik J W Goethe Universität, Robert Mayer-Straße 10, D-60054 Frankfurt/Main-
dc.description.affiliationUnespInst. de Fisica Teorica Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 São Paulo, SP-
dc.identifier.doi10.1088/0954-3899/27/7/314-
dc.identifier.wosWOS:000170187400018-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofJournal of Physics G: Nuclear and Particle Physics-
dc.identifier.scopus2-s2.0-0035608698-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.