Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/6660
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Santos Galvanin, Edineia Aparecida dos | - |
dc.contributor.author | Dal Poz, Aluir Porfírio | - |
dc.date.accessioned | 2014-05-20T13:22:36Z | - |
dc.date.accessioned | 2016-10-25T16:43:44Z | - |
dc.date.available | 2014-05-20T13:22:36Z | - |
dc.date.available | 2016-10-25T16:43:44Z | - |
dc.date.issued | 2012-03-01 | - |
dc.identifier | http://dx.doi.org/10.1109/TGRS.2011.2163823 | - |
dc.identifier.citation | IEEE Transactions on Geoscience and Remote Sensing. Piscataway: IEEE-Inst Electrical Electronics Engineers Inc, v. 50, n. 3, p. 981-987, 2012. | - |
dc.identifier.issn | 0196-2892 | - |
dc.identifier.uri | http://hdl.handle.net/11449/6660 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/6660 | - |
dc.description.abstract | This paper proposes a method for the automatic extraction of building roof contours from a digital surface model (DSM) by regularizing light detection and ranging (LiDAR) data. The method uses two steps. First, to detect aboveground objects (buildings, trees, etc.), the DSM is segmented through a recursive splitting technique followed by a region-merging process. Vectorization and polygonization are used to obtain polyline representations of the detected aboveground objects. Second, building roof contours are identified from among the aboveground objects by optimizing a Markov-random-field-based energy function that embodies roof contour attributes and spatial constraints. The optimal configuration of building roof contours is found by minimizing the energy function using a simulated annealing algorithm. Experiments carried out with the LiDAR-based DSM show that the proposed method works properly, as it provides roof contour information with approximately 90% shape accuracy and no verified false positives. | en |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | - |
dc.format.extent | 981-987 | - |
dc.language.iso | eng | - |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | - |
dc.source | Web of Science | - |
dc.subject | Building roof contours | en |
dc.subject | digital surface model (DSM) | en |
dc.subject | Markov random field (MRF) | en |
dc.subject | simulated annealing (SA) | en |
dc.title | Extraction of Building Roof Contours From LiDAR Data Using a Markov-Random-Field-Based Approach | en |
dc.type | outro | - |
dc.contributor.institution | Mato Grosso State Univ | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Mato Grosso State Univ, Dept ofMathemat, BR-78390000 Barra do Bugres, Brazil | - |
dc.description.affiliation | São Paulo State Univ, Dept Cartog, BR-19060900 Presidente Prudente, Brazil | - |
dc.description.affiliationUnesp | São Paulo State Univ, Dept Cartog, BR-19060900 Presidente Prudente, Brazil | - |
dc.identifier.doi | 10.1109/TGRS.2011.2163823 | - |
dc.identifier.wos | WOS:000300724300025 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | IEEE Transactions on Geoscience and Remote Sensing | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.