You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/6660
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSantos Galvanin, Edineia Aparecida dos-
dc.contributor.authorDal Poz, Aluir Porfírio-
dc.date.accessioned2014-05-20T13:22:36Z-
dc.date.accessioned2016-10-25T16:43:44Z-
dc.date.available2014-05-20T13:22:36Z-
dc.date.available2016-10-25T16:43:44Z-
dc.date.issued2012-03-01-
dc.identifierhttp://dx.doi.org/10.1109/TGRS.2011.2163823-
dc.identifier.citationIEEE Transactions on Geoscience and Remote Sensing. Piscataway: IEEE-Inst Electrical Electronics Engineers Inc, v. 50, n. 3, p. 981-987, 2012.-
dc.identifier.issn0196-2892-
dc.identifier.urihttp://hdl.handle.net/11449/6660-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/6660-
dc.description.abstractThis paper proposes a method for the automatic extraction of building roof contours from a digital surface model (DSM) by regularizing light detection and ranging (LiDAR) data. The method uses two steps. First, to detect aboveground objects (buildings, trees, etc.), the DSM is segmented through a recursive splitting technique followed by a region-merging process. Vectorization and polygonization are used to obtain polyline representations of the detected aboveground objects. Second, building roof contours are identified from among the aboveground objects by optimizing a Markov-random-field-based energy function that embodies roof contour attributes and spatial constraints. The optimal configuration of building roof contours is found by minimizing the energy function using a simulated annealing algorithm. Experiments carried out with the LiDAR-based DSM show that the proposed method works properly, as it provides roof contour information with approximately 90% shape accuracy and no verified false positives.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.format.extent981-987-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)-
dc.sourceWeb of Science-
dc.subjectBuilding roof contoursen
dc.subjectdigital surface model (DSM)en
dc.subjectMarkov random field (MRF)en
dc.subjectsimulated annealing (SA)en
dc.titleExtraction of Building Roof Contours From LiDAR Data Using a Markov-Random-Field-Based Approachen
dc.typeoutro-
dc.contributor.institutionMato Grosso State Univ-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationMato Grosso State Univ, Dept ofMathemat, BR-78390000 Barra do Bugres, Brazil-
dc.description.affiliationSão Paulo State Univ, Dept Cartog, BR-19060900 Presidente Prudente, Brazil-
dc.description.affiliationUnespSão Paulo State Univ, Dept Cartog, BR-19060900 Presidente Prudente, Brazil-
dc.identifier.doi10.1109/TGRS.2011.2163823-
dc.identifier.wosWOS:000300724300025-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofIEEE Transactions on Geoscience and Remote Sensing-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.