You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/6673
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSartori, Lauriana Rubio-
dc.contributor.authorImai, Nilton Nobuhiro-
dc.contributor.authorMura, Jose Claudio-
dc.contributor.authorLeao de Moraes Novo, Evlyn Marcia-
dc.contributor.authorFreire Silva, Thiago Sanna-
dc.date.accessioned2014-05-20T13:22:37Z-
dc.date.accessioned2016-10-25T16:43:46Z-
dc.date.available2014-05-20T13:22:37Z-
dc.date.available2016-10-25T16:43:46Z-
dc.date.issued2011-12-01-
dc.identifierhttp://dx.doi.org/10.1109/TGRS.2011.2157972-
dc.identifier.citationIEEE Transactions on Geoscience and Remote Sensing. Piscataway: IEEE-Inst Electrical Electronics Engineers Inc, v. 49, n. 12, p. 4717-4728, 2011.-
dc.identifier.issn0196-2892-
dc.identifier.urihttp://hdl.handle.net/11449/6673-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/6673-
dc.description.abstractThe purpose of this paper was to evaluate attributes derived from fully polarimetric PALSAR data to discriminate and map macrophyte species in the Amazon floodplain wetlands. Fieldwork was carried out almost simultaneously to the radar acquisition, and macrophyte biomass and morphological variables were measured in the field. Attributes were calculated from the covariance matrix [C] derived from the single-look complex data. Image attributes and macrophyte variables were compared and analyzed to investigate the sensitivity of the attributes for discriminating among species. Based on these analyses, a rule-based classification was applied to map macrophyte species. Other classification approaches were tested and compared to the rule-based method: a classification based on the Freeman-Durden and Cloude-Pottier decomposition models, a hybrid classification (Wishart classifier with the input classes based on the H/a plane), and a statistical-based classification (supervised classification using Wishart distance measures). The findings show that attributes derived from fully polarimetric L-band data have good potential for discriminating herbaceous plant species based on morphology and that estimation of plant biomass and productivity could be improved by using these polarimetric attributes.en
dc.format.extent4717-4728-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)-
dc.sourceWeb of Science-
dc.subjectAmazon floodplainen
dc.subjectclassificationen
dc.subjectmacrophyte speciesen
dc.subjectPhased Array Type L-Band Synthetic Aperture Radar (PALSAR) dataen
dc.subjectpolarimetric decompositionen
dc.subjectradar polarimetryen
dc.titleMapping Macrophyte Species in the Amazon Floodplain Wetlands Using Fully Polarimetric ALOS/PALSAR Dataen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionInstituto Nacional de Pesquisas Espaciais (INPE)-
dc.contributor.institutionUniv Victoria-
dc.description.affiliationSão Paulo State Univ UNESP, BR-19060190 Presidente Prudente, Brazil-
dc.description.affiliationNatl Inst Space Res INPE, BR-12227010 Sao Jose Dos Campos, Brazil-
dc.description.affiliationUniv Victoria, Dept Geog, Victoria, BC V8W 3R4, Canada-
dc.description.affiliationUnespSão Paulo State Univ UNESP, BR-19060190 Presidente Prudente, Brazil-
dc.identifier.doi10.1109/TGRS.2011.2157972-
dc.identifier.wosWOS:000297281500004-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofIEEE Transactions on Geoscience and Remote Sensing-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.