You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/66811
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAndreani, Roberto-
dc.contributor.authorMartÍnez, José Mario-
dc.date.accessioned2014-05-27T11:20:24Z-
dc.date.accessioned2016-10-25T18:17:37Z-
dc.date.available2014-05-27T11:20:24Z-
dc.date.available2016-10-25T18:17:37Z-
dc.date.issued2002-02-01-
dc.identifierhttp://dx.doi.org/10.1007/s001860100158-
dc.identifier.citationMathematical Methods of Operations Research, v. 54, n. 3, p. 345-358, 2002.-
dc.identifier.issn1432-2994-
dc.identifier.urihttp://hdl.handle.net/11449/66811-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/66811-
dc.description.abstractMathematical programming problems with equilibrium constraints (MPEC) are nonlinear programming problems where the constraints have a form that is analogous to first-order optimality conditions of constrained optimization. We prove that, under reasonable sufficient conditions, stationary points of the sum of squares of the constraints are feasible points of the MPEC. In usual formulations of MPEC all the feasible points are nonregular in the sense that they do not satisfy the Mangasarian-Fromovitz constraint qualification of nonlinear programming. Therefore, all the feasible points satisfy the classical Fritz-John necessary optimality conditions. In principle, this can cause serious difficulties for nonlinear programming algorithms applied to MPEC. However, we show that most feasible points do not satisfy a recently introduced stronger optimality condition for nonlinear programming. This is the reason why, in general, nonlinear programming algorithms are successful when applied to MPEC.en
dc.format.extent345-358-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectMathematical programming with equilibrium constraints-
dc.subjectMinimization algorithms-
dc.subjectOptimality conditions-
dc.subjectReformulation-
dc.subjectAlgorithms-
dc.subjectConvergence of numerical methods-
dc.subjectOptimal control systems-
dc.subjectOptimization-
dc.subjectProblem solving-
dc.subjectMathematical programming with equilibrium constraints (MPEC)-
dc.subjectNonlinear programming-
dc.titleOn the solution of mathematical programming problems with equilibrium constraintsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.description.affiliationDepartment of Computer Science and Statistics University of the State of S. Paulo (UNESP), C.P. 136, CEP 15054-000, Sao Jose do Rio Preto-SP-
dc.description.affiliationDepartment of Applied Mathematics IMECC-UNICAMP University of Campinas, CP 6065, 13081-970 Campinas SP-
dc.description.affiliationUnespDepartment of Computer Science and Statistics University of the State of S. Paulo (UNESP), C.P. 136, CEP 15054-000, Sao Jose do Rio Preto-SP-
dc.identifier.doi10.1007/s001860100158-
dc.identifier.wosWOS:000174672100001-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofMathematical Methods of Operations Research-
dc.identifier.scopus2-s2.0-0035261944-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.