You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/66892
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCoelho, Regina Célia-
dc.contributor.authorDi Gesù, Vito-
dc.contributor.authorLo Bosco, Giosuè-
dc.contributor.authorTanaka, Júlia Sawaki-
dc.contributor.authorValenti, Cesare-
dc.date.accessioned2014-05-27T11:20:28Z-
dc.date.accessioned2016-10-25T18:17:47Z-
dc.date.available2014-05-27T11:20:28Z-
dc.date.available2016-10-25T18:17:47Z-
dc.date.issued2002-06-01-
dc.identifierhttp://dx.doi.org/10.1006/rtim.2002.0281-
dc.identifier.citationReal-Time Imaging, v. 8, n. 3, p. 213-226, 2002.-
dc.identifier.issn1007-2014-
dc.identifier.urihttp://hdl.handle.net/11449/66892-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/66892-
dc.description.abstractThis article presents a quantitative and objective approach to cat ganglion cell characterization and classification. The combination of several biologically relevant features such as diameter, eccentricity, fractal dimension, influence histogram, influence area, convex hull area, and convex hull diameter are derived from geometrical transforms and then processed by three different clustering methods (Ward's hierarchical scheme, K-means and genetic algorithm), whose results are then combined by a voting strategy. These experiments indicate the superiority of some features and also suggest some possible biological implications.en
dc.format.extent213-226-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectAnimal cell culture-
dc.subjectBiology-
dc.subjectComputational geometry-
dc.subjectFractals-
dc.subjectGenetic algorithms-
dc.subjectCat ganglion retinal cell classification-
dc.subjectGeometrical transforms-
dc.subjectWard hierarchical scheme-
dc.subjectFeature extraction-
dc.titleShape-based features for cat ganglion retinal cells classificationen
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversity of Palermo-
dc.contributor.institutionUniversidade Estadual de Maringá (UEM)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationCybernetic Vision Research Group IFSC-University of São Paulo, Caixa Postal 369, São Carlos, SP 13560-970-
dc.description.affiliationDipto. di Matematica ed Applicazioni University of Palermo, Via Archirafi 34, 90123, Palermo-
dc.description.affiliationState University of Maringá Campus Universitário, Av. Colombo, 5790 Maringá, PR 87020-900-
dc.description.affiliationIQ-UNESP- Sao Paulo State University, Caixa Postal 355, Araraquara, SP 14801-970-
dc.description.affiliationUnespIQ-UNESP- Sao Paulo State University, Caixa Postal 355, Araraquara, SP 14801-970-
dc.identifier.doi10.1006/rtim.2002.0281-
dc.identifier.wosWOS:000177878600005-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofReal-Time Imaging-
dc.identifier.scopus2-s2.0-0036626184-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.