You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/66939
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRosa, Guilherme J. M.-
dc.contributor.authorYandell, Brian S.-
dc.contributor.authorGianola, Daniel-
dc.date.accessioned2014-05-27T11:20:29Z-
dc.date.accessioned2016-10-25T18:17:53Z-
dc.date.available2014-05-27T11:20:29Z-
dc.date.available2016-10-25T18:17:53Z-
dc.date.issued2002-07-25-
dc.identifierhttp://dx.doi.org/10.1186/1297-9686-34-3-353-
dc.identifier.citationGenetics Selection Evolution, v. 34, n. 3, p. 353-369, 2002.-
dc.identifier.issn0999-193X-
dc.identifier.urihttp://hdl.handle.net/11449/66939-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/66939-
dc.description.abstractThe advent of molecular markers has created opportunities for a better understanding of quantitative inheritance and for developing novel strategies for genetic improvement of agricultural species, using information on quantitative trait loci (QTL). A QTL analysis relies on accurate genetic marker maps. At present, most statistical methods used for map construction ignore the fact that molecular data may be read with error. Often, however, there is ambiguity about some marker genotypes. A Bayesian MCMC approach for inferences about a genetic marker map when random miscoding of genotypes occurs is presented, and simulated and real data sets are analyzed. The results suggest that unless there is strong reason to believe that genotypes are ascertained without error, the proposed approach provides more reliable inference on the genetic map.en
dc.format.extent353-369-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectBayesian inference-
dc.subjectGenetic map construction-
dc.subjectMiscoded genotypes-
dc.subjectmolecular marker-
dc.subjectBayesian analysis-
dc.subjectgenetics-
dc.subjectselective breeding-
dc.subjectBayes theorem-
dc.subjectbiological model-
dc.subjectbrassica napus-
dc.subjectchromosome map-
dc.subjectcomputer simulation-
dc.subjectdata analysis-
dc.subjectgene mapping-
dc.subjectgenetic database-
dc.subjectgenetic marker-
dc.subjectgenetic recombination-
dc.subjectgenotype-
dc.subjectmethodology-
dc.subjectmultifactorial inheritance-
dc.subjectnonhuman-
dc.subjectphenotype-
dc.subjectquantitative trait-
dc.subjectquantitative trait locus-
dc.subjectreliability-
dc.subjectstatistical analysis-
dc.subjectrapeseed-
dc.subjectBrassica-
dc.subjectBrassica napus-
dc.subjectBayes Theorem-
dc.subjectChromosome Mapping-
dc.subjectComputer Simulation-
dc.subjectDatabases, Genetic-
dc.subjectGenetic Markers-
dc.subjectGenotype-
dc.subjectModels, Genetic-
dc.subjectQuantitative Trait, Heritable-
dc.subjectRecombination, Genetic-
dc.titleA Bayesian approach for constructing genetic maps when markers are miscodeden
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversity of Winconsin-
dc.contributor.institutionUniversity of Wisconsin-
dc.contributor.institutionMichigan State University-
dc.description.affiliationDepartment of Biostatistics UNESP, Botucatu, SP-
dc.description.affiliationDepartments of Statistics and of Horticulture University of Winconsin, Madison, WI-
dc.description.affiliationDepartments of Animal Science and of Biostatistics and Medical Informatics University of Wisconsin, Madison, WI-
dc.description.affiliationDepartments of Animal Science and of Fisheries and Wildlife Michigan State University, East Lansing, MI 48824-
dc.description.affiliationUnespDepartment of Biostatistics UNESP, Botucatu, SP-
dc.identifier.doi10.1186/1297-9686-34-3-353-
dc.identifier.wosWOS:000176561700004-
dc.rights.accessRightsAcesso aberto-
dc.identifier.file2-s2.0-0035983153.pdf-
dc.relation.ispartofGenetics Selection Evolution-
dc.identifier.scopus2-s2.0-0035983153-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.