You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/6697
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDos Santos Galvanin, Edineia Aparecida-
dc.contributor.authorDal Poz, Aluir Porfírio-
dc.contributor.authorPires de Souza, Aparecida Doniseti-
dc.date.accessioned2014-05-20T13:22:42Z-
dc.date.available2014-05-20T13:22:42Z-
dc.date.issued2008-01-01-
dc.identifierhttp://ojs.c3sl.ufpr.br/ojs2/index.php/bcg/article/view/11817-
dc.identifier.citationBoletim de Ciências Geodesicas. Curitiba Pr: Universidade Federal do Paraná (UFPR), Centro Politecnico, v. 14, n. 2, p. 221-241, 2008.-
dc.identifier.issn1413-4853-
dc.identifier.urihttp://hdl.handle.net/11449/6697-
dc.description.abstractThis paper proposes a methodology for automatic extraction of building roof contours from a Digital Elevation Model (DEM), which is generated through the regularization of an available laser point cloud. The methodology is based on two steps. First, in order to detect high objects (buildings, trees etc.), the DEM is segmented through a recursive splitting technique and a Bayesian merging technique. The recursive splitting technique uses the quadtree structure for subdividing the DEM into homogeneous regions. In order to minimize the fragmentation, which is commonly observed in the results of the recursive splitting segmentation, a region merging technique based on the Bayesian framework is applied to the previously segmented data. The high object polygons are extracted by using vectorization and polygonization techniques. Second, the building roof contours are identified among all high objects extracted previously. Taking into account some roof properties and some feature measurements (e. g., area, rectangularity, and angles between principal axes of the roofs), an energy function was developed based on the Markov Random Field (MRF) model. The solution of this function is a polygon set corresponding to building roof contours and is found by using a minimization technique, like the Simulated Annealing (SA) algorithm. Experiments carried out with laser scanning DEM's showed that the methodology works properly, as it delivered roof contours with approximately 90% shape accuracy and no false positive was verified.en
dc.format.extent221-241-
dc.language.isopor-
dc.publisherUniversidade Federal do Paraná (UFPR), Centro Politecnico-
dc.sourceWeb of Science-
dc.subjectAutomatic Extractionen
dc.subjectBuilding Roof Contoursen
dc.subjectDigital Elevation Modelen
dc.subjectLaser Scanning Dataen
dc.subjectMarkov Random Fielden
dc.titleExtração automática de contornos de telhados usando dados de varredura a laser e campos randômicos de Markovpt
dc.title.alternativeAutomatic extraction of building roof contours by laser scanning data and markov random fielden
dc.typeoutro-
dc.contributor.institutionUniv Estado Mato Grosso-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Estado Mato Grosso, Dept Matemat, BR-78390000 Barra do Bugres, MT, Brazil-
dc.description.affiliationUniv Estadual Paulista, Fac Ciencias & Tecnol, BR-19060900 Presidente Prudente, SP, Brazil-
dc.description.affiliationUniv Estadual Paulista, Programa Posgrad Ciencias Cartograf, BR-19060900 Presidente Prudente, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, Fac Ciencias & Tecnol, BR-19060900 Presidente Prudente, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, Programa Posgrad Ciencias Cartograf, BR-19060900 Presidente Prudente, SP, Brazil-
dc.identifier.wosWOS:000260626000005-
dc.rights.accessRightsAcesso aberto-
dc.identifier.fileWOS000260626000005.pdf-
dc.relation.ispartofBoletim de Ciências Geodésicas-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.