You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/67053
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSilvestre, Miriam Rodrigues-
dc.contributor.authorLing, Lee Luan-
dc.date.accessioned2014-05-27T11:20:32Z-
dc.date.accessioned2016-10-25T18:18:08Z-
dc.date.available2014-05-27T11:20:32Z-
dc.date.available2016-10-25T18:18:08Z-
dc.date.issued2002-12-01-
dc.identifierhttp://dx.doi.org/10.1109/ICPR.2002.1047927-
dc.identifier.citationProceedings - International Conference on Pattern Recognition, v. 16, n. 3, p. 387-390, 2002.-
dc.identifier.issn1051-4651-
dc.identifier.urihttp://hdl.handle.net/11449/67053-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/67053-
dc.description.abstractIn this article we describe a feature extraction algorithm for pattern classification based on Bayesian Decision Boundaries and Pruning techniques. The proposed method is capable of optimizing MLP neural classifiers by retaining those neurons in the hidden layer that realy contribute to correct classification. Also in this article we proposed a method which defines a plausible number of neurons in the hidden layer based on the stem-and-leaf graphics of training samples. Experimental investigation reveals the efficiency of the proposed method. © 2002 IEEE.en
dc.format.extent387-390-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectBayesian decision boundaries-
dc.subjectNeurons-
dc.subjectPruning techniques-
dc.subjectAlgorithms-
dc.subjectDecision theory-
dc.subjectMathematical models-
dc.subjectNeural networks-
dc.subjectPattern recognition-
dc.titleOptimization of neural classifiers based on bayesian decision boundaries and idle neurons pruningen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.description.affiliationDep. Matematica-FCT-UNESP-
dc.description.affiliationDECOM-FEEC-UNICAMP-
dc.description.affiliationUnespDep. Matematica-FCT-UNESP-
dc.identifier.doi10.1109/ICPR.2002.1047927-
dc.identifier.wosWOS:000177887100094-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofProceedings - International Conference on Pattern Recognition-
dc.identifier.scopus2-s2.0-33751575303-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.