Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/67111
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Machado, José Márcio | - |
dc.contributor.author | Tsuchida, Masayoshi | - |
dc.date.accessioned | 2014-05-27T11:20:34Z | - |
dc.date.accessioned | 2016-10-25T18:18:15Z | - |
dc.date.available | 2014-05-27T11:20:34Z | - |
dc.date.available | 2016-10-25T18:18:15Z | - |
dc.date.issued | 2002-12-01 | - |
dc.identifier | http://www.emis.de/journals/AMEN/2002/011128-3.pdf | - |
dc.identifier.citation | Applied Mathematics E - Notes, v. 2, p. 66-71. | - |
dc.identifier.issn | 1607-2510 | - |
dc.identifier.uri | http://hdl.handle.net/11449/67111 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/67111 | - |
dc.description.abstract | In this work, a series solution is found for the integro-differential equation y″ (t) = -(ω2 c + ω2 f sin2 ωpt)y(t) + ωf (sin ωpt) z′ (0) + ω2 fωp sin ωpt ∫t 0 (cos ωps) y(s)ds, which describes the charged particle motion for certain configurations of oscillating magnetic fields. As an interesting feature, the terms of the solution are related to distinct sequences of prime numbers. | en |
dc.format.extent | 66-71 | - |
dc.language.iso | eng | - |
dc.source | Scopus | - |
dc.title | Solutions for a class of integro-differential equations with time periodic coefficients | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | UNESP State Univ. S. Paulo S. Jose do R. Department of Computing, 15054-000 - S. Jose do Rio Preto | - |
dc.description.affiliationUnesp | UNESP State Univ. S. Paulo S. Jose do R. Department of Computing, 15054-000 - S. Jose do Rio Preto | - |
dc.rights.accessRights | Acesso aberto | - |
dc.relation.ispartof | Applied Mathematics E - Notes | - |
dc.identifier.scopus | 2-s2.0-3042667890 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.