You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/67151
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRosa, G. J M-
dc.contributor.authorPadovani, C. R.-
dc.contributor.authorGianola, D.-
dc.date.accessioned2014-05-27T11:20:35Z-
dc.date.accessioned2016-10-25T18:18:21Z-
dc.date.available2014-05-27T11:20:35Z-
dc.date.available2016-10-25T18:18:21Z-
dc.date.issued2003-01-01-
dc.identifierhttp://dx.doi.org/10.1002/bimj.200390034-
dc.identifier.citationBiometrical Journal, v. 45, n. 5, p. 573-590, 2003.-
dc.identifier.issn0323-3847-
dc.identifier.urihttp://hdl.handle.net/11449/67151-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/67151-
dc.description.abstractLinear mixed effects models have been widely used in analysis of data where responses are clustered around some random effects, so it is not reasonable to assume independence between observations in the same cluster. In most biological applications, it is assumed that the distributions of the random effects and of the residuals are Gaussian. This makes inferences vulnerable to the presence of outliers. Here, linear mixed effects models with normal/independent residual distributions for robust inferences are described. Specific distributions examined include univariate and multivariate versions of the Student-t, the slash and the contaminated normal. A Bayesian framework is adopted and Markov chain Monte Carlo is used to carry out the posterior analysis. The procedures are illustrated using birth weight data on rats in a texicological experiment. Results from the Gaussian and robust models are contrasted, and it is shown how the implementation can be used for outlier detection. The thick-tailed distributions provide an appealing robust alternative to the Gaussian process in linear mixed models, and they are easily implemented using data augmentation and MCMC techniques.en
dc.format.extent573-590-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectBayesian inference-
dc.subjectGibbs sampling-
dc.subjectMetropolis-Hastings-
dc.subjectMixed effects model-
dc.subjectNormal/independent distribution-
dc.subjectRobust model-
dc.titleRobust linear mixed models with normal/independent distributions and Bayesian MCMC implementationen
dc.typeoutro-
dc.contributor.institutionMichigan State University-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversity of Wisconsin-Madison (UW)-
dc.description.affiliationDepartment of Animal Science Michigan State University 1205-1 Anthony Hall, East Lansing, MI 48910-
dc.description.affiliationDepto. de Bioestatística Univ. Estadual Paulista (UNESP), Botucatu 18618-
dc.description.affiliationDepartment of Animal Sciences University of Wisconsin, Madison, WI 53706-
dc.description.affiliationUnespDepto. de Bioestatística Univ. Estadual Paulista (UNESP), Botucatu 18618-
dc.identifier.doi10.1002/bimj.200390034-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofBiometrical Journal-
dc.identifier.scopus2-s2.0-0042570344-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.