Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/6718
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Do Vale, Giovane Maia | - |
dc.contributor.author | Zanin, Rodrigo Bruno | - |
dc.contributor.author | Dal Poz, Aluir Porfírio | - |
dc.date.accessioned | 2014-05-20T13:22:45Z | - |
dc.date.available | 2014-05-20T13:22:45Z | - |
dc.date.issued | 2008-01-01 | - |
dc.identifier | http://ojs.c3sl.ufpr.br/ojs2/index.php/bcg/article/view/11245 | - |
dc.identifier.citation | Boletim de Ciências Geodesicas. Curitiba Pr: Universidade Federal do Paraná (UFPR), Centro Politecnico, v. 14, n. 1, p. 72-93, 2008. | - |
dc.identifier.issn | 1413-4853 | - |
dc.identifier.uri | http://hdl.handle.net/11449/6718 | - |
dc.description.abstract | In this paper is a totally automatic strategy proposed to reduce the complexity of patterns ( vegetation, building, soils etc.) that interact with the object 'road' in color images, thus reducing the difficulty of the automatic extraction of this object. The proposed methodology consists of three sequential steps. In the first step the punctual operator is applied for artificiality index computation known as NandA ( Natural and Artificial). The result is an image whose the intensity attribute is the NandA response. The second step consists in automatically thresholding the image obtained in the previous step, resulting in a binary image. This image usually allows the separation between artificial and natural objects. The third step consists in applying a preexisting road seed extraction methodology to the previous generated binary image. Several experiments carried out with real images made the verification of the potential of the proposed methodology possible. The comparison of the obtained result to others obtained by a similar methodology for road seed extraction from gray level images, showed that the main benefit was the drastic reduction of the computational effort. | en |
dc.format.extent | 72-93 | - |
dc.language.iso | por | - |
dc.publisher | Universidade Federal do Paraná (UFPR), Centro Politecnico | - |
dc.source | Web of Science | - |
dc.subject | Thresholding | en |
dc.subject | Road Extraction | en |
dc.subject | Color Image | en |
dc.subject | Artificiality Index | en |
dc.title | Limiarização contextual automática de imagens coloridas: aplicação na extração de sementes de rodovia | pt |
dc.title.alternative | Automatic Contextual Thresholding of Color Images: Application in Road Seed Extraction | en |
dc.type | outro | - |
dc.contributor.institution | Universidade do Estado de Mato Grosso (UNEMAT) | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | UNEMAT, Univ Estado Mato Grosso, Campus de Colider, MT, Brazil | - |
dc.description.affiliation | Univ Estadual Paulista, FCT, PPGCC, Depto Cartog, São Paulo, Brazil | - |
dc.description.affiliationUnesp | Univ Estadual Paulista, FCT, PPGCC, Depto Cartog, São Paulo, Brazil | - |
dc.identifier.wos | WOS:000260625400005 | - |
dc.rights.accessRights | Acesso aberto | - |
dc.identifier.file | WOS000260625400005.pdf | - |
dc.relation.ispartof | Boletim de Ciências Geodésicas | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.