You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/67494
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLopes, M. L M-
dc.contributor.authorLotufo, A. D P-
dc.contributor.authorMinussi, C. R.-
dc.date.accessioned2014-05-27T11:20:56Z-
dc.date.accessioned2016-10-25T18:19:03Z-
dc.date.available2014-05-27T11:20:56Z-
dc.date.available2016-10-25T18:19:03Z-
dc.date.issued2003-12-01-
dc.identifierhttp://dx.doi.org/10.1109/PTC.2003.1304158-
dc.identifier.citation2003 IEEE Bologna PowerTech - Conference Proceedings, v. 1, p. 362-367.-
dc.identifier.urihttp://hdl.handle.net/11449/67494-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/67494-
dc.description.abstractThis work presents a procedure for electric load forecasting based on adaptive multilayer feedforward neural networks trained by the Backpropagation algorithm. The neural network architecture is formulated by two parameters, the scaling and translation of the postsynaptic functions at each node, and the use of the gradient-descendent method for the adjustment in an iterative way. Besides, the neural network also uses an adaptive process based on fuzzy logic to adjust the network training rate. This methodology provides an efficient modification of the neural network that results in faster convergence and more precise results, in comparison to the conventional formulation Backpropagation algorithm. The adapting of the training rate is effectuated using the information of the global error and global error variation. After finishing the training, the neural network is capable to forecast the electric load of 24 hours ahead. To illustrate the proposed methodology it is used data from a Brazilian Electric Company. © 2003 IEEE.en
dc.format.extent362-367-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectAdaptive parameters-
dc.subjectBackpropagation algorithm-
dc.subjectElectrical load forecasting-
dc.subjectFuzzy controller-
dc.subjectFuzzy logic-
dc.subjectNeural networks-
dc.subjectPostsynaptic function-
dc.subjectAdaptive neural networks-
dc.subjectAdaptive process-
dc.subjectFaster convergence-
dc.subjectFuzzy controllers-
dc.subjectGlobal errors-
dc.subjectMultilayer feedforward neural networks-
dc.subjectNetwork training-
dc.subjectTwo parameter-
dc.subjectBackpropagation algorithms-
dc.subjectElectric loads-
dc.subjectFeedforward neural networks-
dc.subjectNetwork architecture-
dc.subjectElectric load forecasting-
dc.titleA fast electric load forecasting using adaptive neural networksen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUNESP, Ilha Solteira, SP-
dc.description.affiliationUnespUNESP, Ilha Solteira, SP-
dc.identifier.doi10.1109/PTC.2003.1304158-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartof2003 IEEE Bologna PowerTech - Conference Proceedings-
dc.identifier.scopus2-s2.0-84861520857-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.