You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/67496
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSilveira, M. C G-
dc.contributor.authorLotufo, A. D P-
dc.contributor.authorMinussi, C. R.-
dc.date.accessioned2014-05-27T11:20:56Z-
dc.date.accessioned2016-10-25T18:19:04Z-
dc.date.available2014-05-27T11:20:56Z-
dc.date.available2016-10-25T18:19:04Z-
dc.date.issued2003-12-01-
dc.identifierhttp://dx.doi.org/10.1109/PTC.2003.1304414-
dc.identifier.citation2003 IEEE Bologna PowerTech - Conference Proceedings, v. 3, p. 339-345.-
dc.identifier.urihttp://hdl.handle.net/11449/67496-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/67496-
dc.description.abstractThis work presents a methodology to analyze transient stability for electric energy systems using artificial neural networks based on fuzzy ARTMAP architecture. This architecture seeks exploring similarity with computational concepts on fuzzy set theory and ART (Adaptive Resonance Theory) neural network. The ART architectures show plasticity and stability characteristics, which are essential qualities to provide the training and to execute the analysis. Therefore, it is used a very fast training, when compared to the conventional backpropagation algorithm formulation. Consequently, the analysis becomes more competitive, compared to the principal methods found in the specialized literature. Results considering a system composed of 45 buses, 72 transmission lines and 10 synchronous machines are presented. © 2003 IEEE.en
dc.format.extent339-345-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectAdaptive resonance theory-
dc.subjectFuzzy ARTMAP-
dc.subjectNeural network-
dc.subjectPower systems-
dc.subjectTransient stability analysis-
dc.subjectElectric energy systems-
dc.subjectElectrical power system-
dc.subjectFuzzy ARTMAP architecture-
dc.subjectSynchronous machine-
dc.subjectFrequency stability-
dc.subjectFuzzy set theory-
dc.subjectNeural networks-
dc.subjectQuality control-
dc.subjectStandby power systems-
dc.subjectSynchronous machinery-
dc.subjectTransient analysis-
dc.subjectPower quality-
dc.titleTransient stability analysis of electrical power systems using a neural network based on fuzzy ARTMAPen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUNESP, Ilha Solteira, SP-
dc.description.affiliationUnespUNESP, Ilha Solteira, SP-
dc.identifier.doi10.1109/PTC.2003.1304414-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartof2003 IEEE Bologna PowerTech - Conference Proceedings-
dc.identifier.scopus2-s2.0-84861496291-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.