Utilize este identificador para citar ou criar um link para este item:
        
        
        
        http://acervodigital.unesp.br/handle/11449/67496Registro de metadados completo
| Campo DC | Valor | Idioma | 
|---|---|---|
| dc.contributor.author | Silveira, M. C G | - | 
| dc.contributor.author | Lotufo, A. D P | - | 
| dc.contributor.author | Minussi, C. R. | - | 
| dc.date.accessioned | 2014-05-27T11:20:56Z | - | 
| dc.date.accessioned | 2016-10-25T18:19:04Z | - | 
| dc.date.available | 2014-05-27T11:20:56Z | - | 
| dc.date.available | 2016-10-25T18:19:04Z | - | 
| dc.date.issued | 2003-12-01 | - | 
| dc.identifier | http://dx.doi.org/10.1109/PTC.2003.1304414 | - | 
| dc.identifier.citation | 2003 IEEE Bologna PowerTech - Conference Proceedings, v. 3, p. 339-345. | - | 
| dc.identifier.uri | http://hdl.handle.net/11449/67496 | - | 
| dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/67496 | - | 
| dc.description.abstract | This work presents a methodology to analyze transient stability for electric energy systems using artificial neural networks based on fuzzy ARTMAP architecture. This architecture seeks exploring similarity with computational concepts on fuzzy set theory and ART (Adaptive Resonance Theory) neural network. The ART architectures show plasticity and stability characteristics, which are essential qualities to provide the training and to execute the analysis. Therefore, it is used a very fast training, when compared to the conventional backpropagation algorithm formulation. Consequently, the analysis becomes more competitive, compared to the principal methods found in the specialized literature. Results considering a system composed of 45 buses, 72 transmission lines and 10 synchronous machines are presented. © 2003 IEEE. | en | 
| dc.format.extent | 339-345 | - | 
| dc.language.iso | eng | - | 
| dc.source | Scopus | - | 
| dc.subject | Adaptive resonance theory | - | 
| dc.subject | Fuzzy ARTMAP | - | 
| dc.subject | Neural network | - | 
| dc.subject | Power systems | - | 
| dc.subject | Transient stability analysis | - | 
| dc.subject | Electric energy systems | - | 
| dc.subject | Electrical power system | - | 
| dc.subject | Fuzzy ARTMAP architecture | - | 
| dc.subject | Synchronous machine | - | 
| dc.subject | Frequency stability | - | 
| dc.subject | Fuzzy set theory | - | 
| dc.subject | Neural networks | - | 
| dc.subject | Quality control | - | 
| dc.subject | Standby power systems | - | 
| dc.subject | Synchronous machinery | - | 
| dc.subject | Transient analysis | - | 
| dc.subject | Power quality | - | 
| dc.title | Transient stability analysis of electrical power systems using a neural network based on fuzzy ARTMAP | en | 
| dc.type | outro | - | 
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - | 
| dc.description.affiliation | UNESP, Ilha Solteira, SP | - | 
| dc.description.affiliationUnesp | UNESP, Ilha Solteira, SP | - | 
| dc.identifier.doi | 10.1109/PTC.2003.1304414 | - | 
| dc.rights.accessRights | Acesso restrito | - | 
| dc.relation.ispartof | 2003 IEEE Bologna PowerTech - Conference Proceedings | - | 
| dc.identifier.scopus | 2-s2.0-84861496291 | - | 
| Aparece nas coleções: | Artigos, TCCs, Teses e Dissertações da Unesp | |
Não há nenhum arquivo associado com este item.
    
 
Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.
